
Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Review-Report BOB modified USDC bridge library 04.2024
Cure53, Dr.-Ing. M. Heiderich, Dr. A. Pirker, Dr. N. Kobeissi

Index
Introduction

Scope

Identified Vulnerabilities

BOB-02-001 WP1: Front-running allows USDC bridge takeover on init (High)

Miscellaneous Issues

BOB-02-002 WP1: Potential loss of ownership via 0-address owner (Low)

Conclusions

Cure53, Berlin · Apr 30, 24 1/10

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Introduction
“BOB (Build on Bitcoin) is the first Bitcoin L2 with full EVM compatibility & native Bitcoin
support empowering everyone to build and innovate on Bitcoin. BOB (Build on Bitcoin)
enables DeFi and innovation across all fields of Bitcoin use cases & experimentation.
Whatever you're building on Bitcoin, BOB is your swiss-army-knife for all things build on
Bitcoin.”

From https://www.gobob.xyz/

This report, assigned the unique identifier BOB-02-WP1, presents the results of a Cure53
cryptography review and source code audit against the modified USDC bridges library.

Stakeholders from Distributed Crafts Ltd. contacted Cure53 in April 2024 to discuss the aims
and expected outcomes of the project. Once the scope and budget had been finalized, the
review was scheduled for CW16 of the same month. Three senior pentesters from Cure53’s
talent pool were selected to complete the assignment, based on their proficiency and
experience handling components of this nature.

To aid the white-box technical analysis, Cure53 was provided with sources and other
necessary materials. One distinct Work Package (WP) was created for efficiency reasons,
defined by the following headings:

• WP1: Cryptography reviews & code audits against modified USDC bridge library

Please note that the second work package (WP2) tracked within this project covered a
different area of code and is documented in a separate report.

A number of essential preparations were completed in April 2024, namely in CW15, to
encourage a seamless working environment. Throughout the assessment, communication
channels remained open via a dedicated Telegram channel shared by the development
team and Cure53. All relevant personnel from both parties joined the channel and engaged
in the collaborative process when required. The scope definition was clearly mapped out
and the test team was suitably equipped to conduct the initiatives. Cure53 provided regular
status updates on the testing progress and associated findings, though live reporting was
deemed unnecessary.

As for the findings, a total of two were identified after a comprehensive review of the WP1
scope items. To break these down, one was categorized as a security vulnerability and the
other was a lower risk, a common vulnerability.

Cure53, Berlin · Apr 30, 24 2/10

https://cure53.de/
https://www.gobob.xyz/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

The provided source code proved resilient to a plethora of typical breach schemes, which
confirms the development team's effectiveness in minimizing the attack surface and
mitigating vulnerabilities within the assessed components. However, several of the findings
represent valuable hardening recommendations.

A number of vulnerabilities were encountered that should be addressed and resolved at the
earliest possible convenience for the internal team. The sole High rated vulnerability, which
pertains to a potential USDC bridge takeover scenario (see BOB-02-001), should be
prioritized for remediation. To caveat this, the development team’s proactive actions to
resolve some of the vulnerabilities during the active testing phase is praiseworthy.

Moving forward, the report presents a selection of key chapters for ease of reference. Firstly,
the Scope clarifies the test setup and available materials. Next, the Identified Vulnerabilities
and Miscellaneous Issues comprise all observed findings in ticket format. The tickets provide
supporting information such as a technical rundown, Proof-of-Concept (PoC), affected code
examples, and remediation advice.

To finalize the document, the Conclusions section summarizes Cure53’s opinion of the
scope’s security performance by taking a closer look at the coverage and discoveries.

Cure53, Berlin · Apr 30, 24 3/10

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Scope
• Cryptography reviews & code audits against BOB Solidity SCs & USDC bridge library

◦ WP1: Cryptography reviews & code audits against modified USDC bridge library
▪ Sources:

• https://github.com/bob-collective/optimism/pull/1
▪ Commits:

• https://github.com/bob-collective/optimism/pull/1/commits/
a80a28610962d361cf1c8b67c3f513d0ffb1f792

• https://github.com/bob-collective/optimism/pull/1/commits/
12996ea145327eab87684376e79e845108cf6a67

• https://github.com/bob-collective/optimism/pull/1/commits/
2ba5514db1a8cf68bedd6de34000498824f28246

◦ Test-supporting material was shared with Cure53
◦ All relevant sources were shared with Cure53

Cure53, Berlin · Apr 30, 24 4/10

https://cure53.de/
https://github.com/bob-collective/optimism/pull/1/commits/2ba5514db1a8cf68bedd6de34000498824f28246
https://github.com/bob-collective/optimism/pull/1/commits/2ba5514db1a8cf68bedd6de34000498824f28246
https://github.com/bob-collective/optimism/pull/1/commits/12996ea145327eab87684376e79e845108cf6a67
https://github.com/bob-collective/optimism/pull/1/commits/12996ea145327eab87684376e79e845108cf6a67
https://github.com/bob-collective/optimism/pull/1/commits/a80a28610962d361cf1c8b67c3f513d0ffb1f792
https://github.com/bob-collective/optimism/pull/1/commits/a80a28610962d361cf1c8b67c3f513d0ffb1f792
https://github.com/bob-collective/optimism/pull/1
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Identified Vulnerabilities
The following section lists all vulnerabilities and implementation issues identified during the
testing period. Notably, findings are cited in chronological order rather than by degree of
impact, with the severity rank offered in brackets following the title heading for each
vulnerability. Furthermore, all tickets are given a unique identifier (e.g., BOB-02-001) to
facilitate any future follow-up correspondence.

BOB-02-001 WP1: Front-running allows USDC bridge takeover on init (High)
Fix note: The issue was mitigated by the customer during the assessment by disabling
initializers for all USDC bridges when creating them directly without a proxy. The fix was
verified by Cure53 and the problem no longer exists.

The deployment of a new L1 or L2 USDC bridge involves two steps, creation and
initialization. The bridge constructors are empty, while both contracts implement a function
entitled initialize. Firstly, the bridge owner must create the corresponding bridge by creating
a new contract instance via its constructor. Secondly, the bridge owner must call the
initialize function of the respective bridge to claim ownership. The initialize function also sets
the addresses of the respective tokens, the other bridge, and the utilized messenger. Here,
testing determined that the process of bridge initialization (and also therefore ownership
claiming) is vulnerable to front-running attacks.

This constitutes an immediate security risk for all USDC bridge contracts. In the event that a
victim creates a new USDC bridge contract instance, an attacker could attempt to front-run
the invocation of the initialize function and take over the newly created bridge instance.
Since bridges originate from the USDC bridge feature, the adversary could utilize the
contract instances to mount Denial-of-Service (DoS) attacks or cause further, potentially
even financial, damage to victim users.

The internal team clarified that all bridge contracts will be inspected and the deployments in
question will not be used on the UI in the event of front-running. Recurring attempts before
deployment success without front-running will result in a waste of gas for the victim operator.
Moreover, one could utilize a hijacked USDC bridge to instigate severe damage.

The excerpts below demonstrate that bridge construction procedures are completely
decoupled from their initialization. The constructors fail to transfer the contract ownership
and the initialize functions correspond to public functions without access control, which
renders them invokable by anyone. Ultimately, the respective initialize functions invoke the
internal __UsdcBridge_init function of the UsdcBridge contract, which sets all fields and
transfers the ownership.

Cure53, Berlin · Apr 30, 24 5/10

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Affected file #1:
packages/contracts-bedrock/src/L1/L1UsdcBridge.sol

Affected code #1:
constructor() UsdcBridge() { }
[...]
function initialize(
 CrossDomainMessenger _messenger,
 UsdcBridge _otherBridge,
 address _l1Usdc,
 address _l2Usdc,
 address _owner
)
 public
 initializer
{
 __UsdcBridge_init({
 _messenger: _messenger,
 _otherBridge: _otherBridge,
 _l1Usdc: _l1Usdc,
 _l2Usdc: _l2Usdc,
 _owner: _owner
 });
}

Affected file #2:
packages/contracts-bedrock/src/L2/L2UsdcBridge.sol

Affected code #2:
constructor() UsdcBridge() { }
[...]
function initialize(UsdcBridge _otherBridge, address _l1Usdc, address
_l2Usdc, address _owner) public initializer {
 __UsdcBridge_init({
 _messenger:
CrossDomainMessenger(Predeploys.L2_CROSS_DOMAIN_MESSENGER),
 _otherBridge: _otherBridge,
 _l1Usdc: _l1Usdc,
 _l2Usdc: _l2Usdc,
 _owner: _owner
 });
}

Affected file #3:
packages/contracts-bedrock/src/universal/UsdcBridge.sol

Cure53, Berlin · Apr 30, 24 6/10

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Affected code #3:
function __UsdcBridge_init(
 CrossDomainMessenger _messenger,
 UsdcBridge _otherBridge,
 address _l1Usdc,
 address _l2Usdc,
 address _owner
)
 internal
 onlyInitializing
{
 messenger = _messenger;
 otherBridge = _otherBridge;
 l1Usdc = _l1Usdc;
 l2Usdc = _l2Usdc;
 _transferOwnership(_owner);
}

To mitigate this issue, Cure53 strongly recommends atomically creating and initializing the
concrete USDC bridges via the constructor of L1 and L2 USDC bridges. When used through
a transparent proxy, the development team could consider other solutions such as
upgradeToAndCall1, for example. In this case, one must restrict the ability to invoke the
respective initialize functions when creating and using L1 and L2 USDC bridges directly.

1 https://github.com/eth[...]imism/optimism/blob/a12[...]d2/packages/[...]/contracts/universal/Proxy.sol#L98

Cure53, Berlin · Apr 30, 24 7/10

https://cure53.de/
https://github.com/ethereum-optimism/optimism/blob/a12a09f7000ff785a4058998e09b366cbe5a3ed2/packages/contracts-bedrock/contracts/universal/Proxy.sol#L98
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Miscellaneous Issues
This section covers any and all noteworthy findings that did not incur an exploit but may
assist an attacker in successfully achieving malicious objectives in the future. Most of these
results are vulnerable code snippets that did not provide an easy method by which to be
called. Conclusively, while a vulnerability is present, an exploit may not always be possible.

BOB-02-002 WP1: Potential loss of ownership via 0-address owner (Low)
Fix note: The issue was mitigated by the customer during the assessment and fix-verified
by Cure53.

The pull request for the integration of USDC bridges contains a USDC manager contract.
This contract enables an allow-listed address (that can be set by the owner of the USDC
manager contract instance) to alter the administrator of a USDC proxy, transfer the
ownership of a token proxy, and remove the minter role from a master minter address. The
contract participates in the management process of USDC tokens. However, the audit team
found that the contract fails to check for the 0 address when transferring the USDC roles.

In Solidity, developers often use the 0 address to indicate the special case of a non-existent
address. An attacker that corresponds to the allow-listed takeover origin of a USDC
manager could intentionally provide the 0 address when transferring USDC roles. Since it
remains unclear how the referenced contracts handle 0 addresses, this could potentially
render the USDC token proxy inaccessible.

The excerpt below underscores that the owner address parameter of the
transferUSDCRoles function is not checked for the 0 address.

Affected file:
packages/contracts-bedrock/src/L2/UsdcManager.sol

Affected code:
function transferUSDCRoles(address owner) external {
 require(msg.sender == whitelistedTakeoverOrigin, "Unauthorized
transfer");
 // Change proxy admin
 IUsdcProxy(tokenProxyAddress).changeAdmin(owner);
 // remove minter
 IMasterMinter(masterMinterAddress).removeMinter();
 // Transfer implementation owner
 IUsdcImpl(tokenProxyAddress).transferOwnership(owner);
}

To mitigate this issue, Cure53 advises checking the owner parameter of the
transferUSDCRoles function for the 0 address using a require statement.

Cure53, Berlin · Apr 30, 24 8/10

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Conclusions
This Q2 2024 audit consisted of two work packages. The one covered in this report, WP1,
focused on evaluating the security of the pull request for the modified USDC bridges library.
The WP1 pull request was publicly available, and the customer provided the URL prior to the
assessment. Since this engagement was a source code audit only, no additional resources
such as infrastructure or testing environment were provided.

The external and in-house teams remained in contact via a specifically established
Telegram channel, which hosted open questions and allowed the testers to relay progress
updates. The cross-team communication was generally excellent and assistance was
provided whenever requested.

The auditors achieved an adequate level of coverage within the allotted time frame. In
context, the source code of both work packages was compositionally moderate. The smart
contracts in scope are written in Solidity. On a positive note, the respective code bases were
well organized at the time of inspection.

The smart contracts were reviewed for common vulnerabilities that affect Solidity
specifically:

• The first area of concern was reentrancy issues. Cure53 found that the smart
contracts perform external calls almost exclusively after performing all state-
changing operations to the contract itself, which tends to rule out reentrancy flaws
by default. Despite strenuous efforts in this area, the test team was unable to
discover any connected problems.

• Next, the team scoured the source code for issues related to front-running, another
prominent vulnerability class for smart contracts. Here, testing determined that both
the L1 and L2 USDC bridges were vulnerable to takeovers via front-running upon
initialization, as documented in ticket BOB-02-001. However, the development team
pushed a fix that disables the initialize function of the respective bridges upon
construction, which effectively renders these functions inaccessible when creating
an L1 or L2 USDC bridge without a proxy.

• Oftentimes, Solidity contracts suffer from arithmetic errors due to loss of precision,
resulting from an incorrect order of arithmetic operations. Furthermore, former
versions of Solidity neglect to check for overflow and underflow situations.
Nevertheless, the assessors verified that the smart contracts exhibit negligible
attack surface with regards to these circumstances.

Cure53, Berlin · Apr 30, 24 9/10

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

• The team also stringently investigated the visibilities and modifiers of the contract
functions. However, the conclusion was made that the smart contracts do not
expose any mechanisms that would otherwise widen the attack surface, contributing
to the robust overall impression.

• Another focus aspect was the likelihood of DoS situations and griefing attacks,
which could be attempted by threat actors in order to disrupt or modify the behavior
of smart contracts. The team explored this vulnerability angle in depth, discovering
several points of contention.

• The absence of parameter validations in smart contracts also correlates with the
aforementioned griefing attack vectors, since parameters deviating from expected or
tolerated values may render the usage of a contract unfavorable or even
unacceptable. Here, the observation was made that some of the contracts fail to
check parameters for 0 addresses, which could potentially lead to a loss of
ownership or funds, as reported in ticket BOB-02-002.

• Elsewhere, the audit team searched for missing authorization checks and attacks
leading to impersonations. Here, it was positively concluded that the contracts
successfully nullify these compromise strategies. Cure53 also sought to pinpoint any
logical flaws such as the assignment of absolute approval values, for instance,
though no associated behaviors were noted.

In summary, Cure53 can confirm that the provided source code exhibits satisfactory security
proficiency under the current configuration. Many of the identified issues correspond to
hardening recommendations that will provide defense-in-depth and further protect assets
against malicious actors outside of the current threat model.

The development team has successfully minimized the exposed attack surface and negated
most vulnerability classes that could plausibly affect the characteristics in-scope for this
audit. Lastly, the in-house team’s diligence toward addressing some of the pressing
concerns soon after detection is commendable and corroborates the argument that their
framework is progressing in an upward trajectory from a security viewpoint.

Cure53 would like to thank Gregory Hill, Sander Bosma, and Dominik Harz from the
Distributed Crafts Ltd. team for their excellent project coordination, support, and assistance,
both before and during this assignment.

Cure53, Berlin · Apr 30, 24 10/10

https://cure53.de/
mailto:mario@cure53.de

	Review-Report BOB modified USDC bridge library 04.2024
	Index
	Introduction
	Scope
	Identified Vulnerabilities
	BOB-02-001 WP1: Front-running allows USDC bridge takeover on init (High)

	Miscellaneous Issues
	BOB-02-002 WP1: Potential loss of ownership via 0-address owner (Low)

	Conclusions

