
Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Review-Report BOB Onramp Smart Contracts 04.2024
Cure53, Dr.-Ing. M. Heiderich, Dr. A. Pirker, Dr. N. Kobeissi

Index
Introduction

Scope

Identified Vulnerabilities

BOB-02-003 WP2: Integer overflow in block stream observer (Low)

BOB-02-004 WP2: DoS in block stream observer (Low)

BOB-02-009 WP2: Gas waste and potential griefing via gratuity & fee (Low)

BOB-02-010 WP2: Permanent DoS of Onramp contract by LP (Medium)

Miscellaneous Issues

BOB-02-005 WP2: Block timestamp dependence of update modifier (Info)

BOB-02-007 WP2: Insufficient update guard for swap execution (Info)

Conclusions

Cure53, Berlin · Apr 30, 24 1/16

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Introduction
“BOB (Build on Bitcoin) is the first Bitcoin L2 with full EVM compatibility & native Bitcoin
support empowering everyone to build and innovate on Bitcoin. BOB (Build on Bitcoin)
enables DeFi and innovation across all fields of Bitcoin use cases & experimentation.
Whatever you're building on Bitcoin, BOB is your swiss-army-knife for all things build on
Bitcoin.”

From https://www.gobob.xyz/

This report, assigned the unique identifier BOB-02-WP2, presents the results of a Cure53
cryptography review and source code audit against the Onramp smart contracts, and
associated codebases.

Stakeholders from Distributed Crafts Ltd. contacted Cure53 in April 2024 to discuss the aims
and expected outcomes of the project. Once the scope and budget had been finalized, the
review was scheduled for CW16 of the same month. Three senior pentesters from Cure53’s
talent pool were selected to complete the assignment, based on their proficiency and
experience handling components of this nature.

To aid the white-box technical analysis, Cure53 was provided with sources and other
necessary materials. One distinct Work Package (WP) was created for efficiency reasons,
defined by the following headings:

• WP2: Cryptography reviews & code audits against BOB Onramp codebase & SCs

Please note that the first work package (WP1) tracked within this project covered a different
area of code and is documented in a separate report.

A number of essential preparations were completed in April 2024, namely in CW15, to
encourage a seamless working environment. Throughout the assessment, communication
channels remained open via a dedicated Telegram channel shared by the development
team and Cure53. All relevant personnel from both parties joined the channel and engaged
in the collaborative process when required.

The scope definition was clearly mapped out and the test team was suitably equipped to
conduct the initiatives. Cure53 provided regular status updates on the testing progress and
associated findings, though live reporting was deemed unnecessary. Onto the findings: a
total of six were identified following widespread coverage over the WP2 scope items. To
break those down, four were categorized as security vulnerabilities and the other two
pertained to lower risk, common weaknesses.

Cure53, Berlin · Apr 30, 24 2/16

https://cure53.de/
https://www.gobob.xyz/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

The provided source code proved resilient to a plethora of typical breach schemes, which
confirms the development team's effectiveness in minimizing the attack surface and
mitigating vulnerabilities within the assessed components. However, several of the findings
represent valuable hardening recommendations.

Moving forward, the report presents a selection of key chapters for ease of reference. Firstly,
the Scope clarifies the test setup and available materials. Next, the Identified Vulnerabilities
and Miscellaneous Issues comprise all observed findings in ticket format. The tickets provide
supporting information such as a technical rundown, Proof-of-Concept (PoC), affected code
examples, and remediation advice.

To finalize the document, the Conclusions section summarizes Cure53’s opinion of the
scope’s security performance by taking a closer look at the coverage and discoveries.

Cure53, Berlin · Apr 30, 24 3/16

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Scope
• Cryptography reviews & code audits against BOB Solidity SCs & Rust codebase

◦ WP2: Cryptography reviews & code audits against BOB Onramp codebase & SCs
▪ Sources:

• https://github.com/bob-collective/bob-onramp
▪ Commit:

• 297eeb1faeb7387bab142b4d2e0bcc6ef191747a
◦ Test-supporting material was shared with Cure53
◦ All relevant sources were shared with Cure53

Cure53, Berlin · Apr 30, 24 4/16

https://cure53.de/
https://github.com/bob-collective/bob-onramp
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Identified Vulnerabilities
The following section lists all vulnerabilities and implementation issues identified during the
testing period. Notably, findings are cited in chronological order rather than by degree of
impact, with the severity rank offered in brackets following the title heading for each
vulnerability. Furthermore, all tickets are given a unique identifier (e.g., BOB-02-003) to
facilitate any future follow-up correspondence.

BOB-02-003 WP2: Integer overflow in block stream observer (Low)
Cure53 detected the presence of an integer overflow vulnerability in the wait_for_block
function within Onramp’s high-level Rust interface. This function waits until a specified block
height achieves a minimum number of block confirmations before the block is accepted.

The vulnerability arises due to the insecure casting of the num_confirmations variable, which
represents an unsigned 32-bit integer (u32) to a signed 32-bit integer (i32).

In scenarios whereby num_confirmations is excessively large (e.g., the maximum value of a
u32 - 232-1 - or close to it), the cast into an i32 can result in negative values due to an integer
overflow. Consequently, the comparison logic might incorrectly evaluate to true even when
the actual number of confirmations is insufficient, thus compromising the integrity of the
block acceptance process.

Affected file:
bob-onramp/app/src/bitcoin_client.rs

Cure53, Berlin · Apr 30, 24 5/16

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Affected code:
async fn wait_for_block(&self, height: u32, num_confirmations: u32) ->
Result<Block, Error> {
 loop {
 match self.rpc.get_block_hash(height.into()) {
 Ok(hash) => {
 let info = self.rpc.get_block_info(&hash)?;
 if info.confirmations >= num_confirmations as i32 {
 return Ok(self.rpc.get_block(&hash)?);
 } else {
 tokio::time::sleep(RETRY_DURATION).await;
 continue;
 }
 }
 Err(BitcoinError::JsonRpc(JsonRpcError::Rpc(err)))
 if BitcoinRpcError::from(err.clone())
 == BitcoinRpcError::RpcInvalidParameter =>
 {
 // block does not exist yet
 tokio::time::sleep(RETRY_DURATION).await;
 continue;
 }
 Err(err) => {
 return Err(err.into());
 }
 }
 }
 }

To mitigate this issue, Cure53 recommends altering the code to avoid unsafe casting
throughout the confirmations calculation process. Alternatively, bounds can be implemented
in order to ensure that the number of confirmations requested is never unreasonably low or
high.

BOB-02-004 WP2: DoS in block stream observer (Low)
The wait_for_block function in the Onramp’s high-level Rust interface exhibits a design
paradigm that could lead to a Denial-of-Service (DoS) situation. This function is designed to
fetch a block at a given height with a minimum number of confirmations from a blockchain
node via JSON-RPC.

The concern revolves around the use of an indefinite loop that only exists under certain
conditions, which could be manipulated or delayed indefinitely by an attacker, leading to
resource exhaustion. The loop continuously polls the blockchain node for a block at a
specified height with sufficient confirmations. If the block is not yet available or does not
meet the confirmation threshold, the function sleeps for a predetermined duration
(RETRY_DURATION) and then retries.

Cure53, Berlin · Apr 30, 24 6/16

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

This loop can potentially run indefinitely if:

• The specified block height does not exist or is far into the future.
• The block at the specified height is withheld from achieving the necessary

confirmations due to network issues or malicious activity.

Each iteration of the loop involves network calls that consume resources and possibly CPU
cycles on the server hosting the blockchain node.

Affected file:
bob-onramp/app/src/bitcoin_client.rs

Affected code:
async fn wait_for_block(&self, height: u32, num_confirmations: u32) ->
Result<Block, Error> {
 loop {
 match self.rpc.get_block_hash(height.into()) {
 Ok(hash) => {
 let info = self.rpc.get_block_info(&hash)?;
 if info.confirmations >= num_confirmations as i32 {
 return Ok(self.rpc.get_block(&hash)?);
 } else {
 tokio::time::sleep(RETRY_DURATION).await;
 continue;
 }
 }
 Err(BitcoinError::JsonRpc(JsonRpcError::Rpc(err)))
 if BitcoinRpcError::from(err.clone())
 == BitcoinRpcError::RpcInvalidParameter =>
 {
 // block does not exist yet
 tokio::time::sleep(RETRY_DURATION).await;
 continue;
 }
 Err(err) => {
 return Err(err.into());
 }
 }
 }
 }

To mitigate the risk of a DoS situation and enhance the robustness of the wait_for_block
function, the developer team should consider the following modifications:

Cure53, Berlin · Apr 30, 24 7/16

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

• Timeout implementation: Introduce a maximum timeout for the loop to ensure that
the function does not run indefinitely. This could be implemented as an elapsed time
or maximum number of retries.

• Rate limiting: Incorporate a rate limit for the number of times the function can query
the blockchain within a certain time period.

• Exponential backoff: Rather than leverage a fixed sleep interval, one could
integrate an exponential backoff mechanism for the sleep duration between retries.
This strategy would reduce the load on both the network and server during periods
of high demand or failure.

BOB-02-009 WP2: Gas waste and potential griefing via gratuity & fee (Low)
Fix note: The issue was mitigated by the customer during the assessment and fix-verified
by Cure53.

Liquidity Providers (LPs) correspond to the owners of Onramp contracts. In the Onramp
system, a relayer creates a new Onramp contract for an LP through the OnrampFactory
smart contract. The relayer provides the LP address to the OnrampFactory contract that
creates the new instance of the Onramp contract, which in turn sets the LP as owner. The
LP of the Onramp contract can adjust certain parameters, such as the gratuity or fee divisor,
by first invoking the startUpdate function. After a six-hour delay, the LP may adjust the
parameters arbitrarily. Finally, the LP ends the parameter update by invoking the endUpdate
function. With this in mind, Cure53 confirmed that the parameters for the gratuity and fee
divisor of an Onramp contract are not checked prior to being configured, meaning that
arbitrary values are permitted.

This enables a malicious LP to set the values for gratuity and fee divisor to problematic
numbers. For instance, when the OnrampFactory contract executes a swap, the Onramp
contract ultimately transfers a gratuity to the swap’s _recipient. Setting the gratuity explicitly
to 0 will not transfer any funds and essentially wastes gas. Furthermore, the LP could also
set the fee divisor to 1, which implies that the entire amount intended to be transferred
corresponds to the fee. This results in a 0 amount transfer on the utilized ERC20 token.
Depending on the ERC20 token implementation, this results in a revert. However, a waste of
gas for the operator executing the swap will be induced in all cases.

Notably, this issue could be exploited via swap execution front-running due to the flawed
update guard described in ticket BOB-02-007, which amplifies this attack vector.
Specifically, a relayer could execute swaps even after the update security window, which in
turn facilitates executing both executeSwap and functions that use the modifier canUpdate,
such as setGratuity. However, the team was also not able to identify a guard off-chain to
prevent arbitrary values, since the gratuity and fee divisor off-chain to automatically block
the swap execution after an update process was concluded by an LP.

Cure53, Berlin · Apr 30, 24 8/16

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

The snippet below demonstrates the flaw for the Onramp smart contract’s gratuity field,
whereby one can verify that the field is never checked for the 0 value.

Affected file #1:
bob-onramp/contracts/src/Onramp.sol

Affected code #1:
constructor(
 [...]
 uint64 _gratuity
) Ownable() {
 [...]
 gratuity = _gratuity;
}
[...]
function setGratuity(uint64 _gratuity) external onlyOwner canUpdate {
 emit UpdateGratuity(_gratuity);
 gratuity = _gratuity;
}
[...]
function executeSwap(
 bytes32 _txHash,
 uint256 _outputValueSat,
 address payable _recipient
) external onlyFactory {
 [...]
 _recipient.transfer(gratuity);
}

The snippet below highlights the issue for the Onramp smart contract’s feeDivisor field,
whereby one can also confirm that this field is never checked for the 1 value. Furthermore,
one can deduce from the calculateFee function that a feeDivisor of 1 corresponds to the full
amount of the swap fee.

Affected file #2:
bob-onramp/contracts/src/Onramp.sol

Affected code #2:
constructor(
 [...]
 uint64 _feeDivisor,
 [...]
) Ownable() {
 [...]
 feeDivisor = _feeDivisor;
 gratuity = _gratuity;

Cure53, Berlin · Apr 30, 24 9/16

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

}
[...]
function setFeeDivisor(uint64 _feeDivisor) external onlyOwner canUpdate {
 emit UpdateFeeDivisor(_feeDivisor);
 feeDivisor = _feeDivisor;
}
[...]
function executeSwap(
 bytes32 _txHash,
 uint256 _outputValueSat,
 address payable _recipient
) external onlyFactory {
 [...]
 uint256 feeSat = calculateFee(_outputValueSat);
 uint256 amount = calculateAmount(_outputValueSat - feeSat);

 emit ExecuteSwap(_recipient, _outputValueSat, feeSat, amount,
gratuity);

 // transfer token
 require(token.transfer(_recipient, amount), "Could not transfer
ERC20");
 [...]
}
[...]
function calculateFee(uint256 _outputValueSat)
 [...]
{
 uint256 feeSat = feeDivisor > 0 ? _outputValueSat / feeDivisor : 0;
 return feeSat;
}

To mitigate this issue, Cure53 advises checking both the gratuity and feeDivisor fields for
plausible values on all assignments, specifically 0 and 1, respectively.

Cure53, Berlin · Apr 30, 24 10/16

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

BOB-02-010 WP2: Permanent DoS of Onramp contract by LP (Medium)
Cure53 observed that the BOB Onramp system involves several parties. Some parties, such
as the relayer, may be considered trusted whereas others, like Liquidity Providers (LPs), are
assumed to act maliciously. In this threat model, Cure53 identified multiple attacks whereby
LPs could evoke a permanent Denial-of-Service (DoS) situation against an Onramp contract
instance. A permanent DoS via a maliciously acting LP corresponds to a waste of gas for all
contracts owned by the LP in question, as the operator of the relayer created them and must
now accommodate for the blocked Onramp contract instances by creating new Onramp
contract instances with other LPs.

For example, a malicious LP may initiate an update process by invoking the startUpdate
function on an Onramp contract instance owned by the provider. After six hours, i.e. the
update delay, the relayer cannot execute any swaps via this Onramp contract instance, due
to the (fixed) update guard mentioned in ticket BOB-02-007. Until the LP invokes the
endUpdate function, the Onramp contract instance will no longer be accessible for the
relayer. This constitutes a permanent DoS for the Onramp contract instance, as only the LP
itself may unblock the Onramp contract instance via the endUpdate function.

Additional scenarios that could exacerbate this vulnerability entail the following:

• A malicious LP could coordinate initiating the update process across multiple
Onramp contract instances simultaneously, which would maximize disruption by
affecting multiple contracts and increasing the impact and visibility of the attack.

• By manipulating economic incentives, a malicious LP could render continued use of
the affected Onramp contract instances unprofitable for relayers. This could involve
artificially increasing the costs associated with transactions or creating market
conditions that enhance the viability of alternatives. The flaw described in ticket
BOB-02-009 could also magnify this attack strain.

• Repeated attacks (or even simply the threat of them) could damage the reputation of
the Onramp system. Over time, this could lead to a decrease in trust among users
and other LPs, potentially reducing the overall user base and volume of
transactions.

To mitigate this issue, Cure53 advises reviewing the roles and responsibilities of Onramp
contracts. The internal team could enforce that trusted relayers remain owners of Onramp
contracts and can modify the associated LP. As such, trusted relayers will be able to
intervene should malicious LPs become active.

Cure53, Berlin · Apr 30, 24 11/16

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Miscellaneous Issues
This section covers any and all noteworthy findings that did not incur an exploit but may
assist an attacker in successfully achieving malicious objectives in the future. Most of these
results are vulnerable code snippets that did not provide an easy method by which to be
called. Conclusively, while a vulnerability is present, an exploit may not always be possible.

BOB-02-005 WP2: Block timestamp dependence of update modifier (Info)
The Onramp contract contains a modifier that prevents calling certain functions, while a
Liquidity Provider (LP) alters contract fields/parameters. The LP, who corresponds to the
owner of Onramp contracts, must explicitly initiate an update by calling the startUpdate
function, which sets the updateStart field to the block.timestamp value. Commencing an
update gives the relayer time to execute all pending orders before the LP is able to modify
contract parameters. Here, testing verified that the fields involved in either allowing or
blocking functions during an update process depend on a block's timestamp, i.e.
block.timestamp.

Continued use of a block’s timestamp could potentially incur risk from a security perspective,
since miners can influence it in a malicious manner to evoke potential DoS situations,
among other plausible implications1.

One can deduce from the code excerpt below that the Onramp contract employs the value
of block.timestamp to mark the start of an update.

Affected file:
bob-onramp/contracts/src/Onramp.sol

Affected code:
function startUpdate() external onlyOwner {
 updateStart = uint64(block.timestamp);
 emit StartUpdate(updateStart);
}

To mitigate this issue, Cure53 discourages relying on the value of block.timestamp to mark
the start of an update. Alternatively, the implementation should use off-chain and trusted
oracles to provide a timestamp externally.

1 https://glorypraise.hashnode.dev/vulnerability-8-timestamp-dependence-vulnerability

Cure53, Berlin · Apr 30, 24 12/16

https://cure53.de/
https://glorypraise.hashnode.dev/vulnerability-8-timestamp-dependence-vulnerability
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

BOB-02-007 WP2: Insufficient update guard for swap execution (Info)
Fix note: The issue was mitigated by the customer during the assessment and fix-verified
by Cure53.

The Onramp contract contains a guard statement to block swaps while an update of the
contract’s parameters is in progress. This guard statement serves to protect the swap
initiator against a malicious LP (as the owner of the Onramp contracts) that intentionally
raises fees, modifies other parameters, or even withdraws funds by front-running the swap
invoked via the OnrampFactory. Here, the team confirmed that the implemented guard
statement is always true and therefore does not offer any protection against a malicious LP.

Further discussions with the customer confirmed that this limitation is already known.
Therefore, this ticket’s severity score was downgraded from High to Info and transferred to
the miscellaneous rather than vulnerabilities section.

The code snippet below highlights the guard statement. Note that the updateStart field is set
to block.timestamp (via the startUpdate function), which renders the guard condition always
true.

Affected file:
bob-onramp/contracts/src/Onramp.sol

Affected code:
function executeSwap(
 bytes32 _txHash,
 uint256 _outputValueSat,
 address payable _recipient
) external onlyFactory {
 // slither-disable-next-line timestamp
 require(
 updateStart <= block.timestamp + UPDATE_DELAY,
 "Not allowed to execute"
);

 [...]
}

To mitigate this issue, Cure53 advises revising the guard statement. The condition should
correspond to block.timestamp <= updateStart + UPDATE_DELAY, since this allows the
swap execution before the canUpdate modifier (utilized for the functions modifying the
contract parameters) becomes effective.

Cure53, Berlin · Apr 30, 24 13/16

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Conclusions
This Q2 2024 audit comprised two work packages. The one covered in this report, WP2,
concentrated on reviewing the Onramp smart contracts and associated Rust codebase. The
private repository targeted for WP2 was made accessible to Cure53 in advance. Since this
assignment constituted a source code audit exclusively, additional assets such as an
infrastructure or test environment were not provided.

The external and in-house teams remained in contact via a specifically established
Telegram channel, which hosted open questions and allowed the testers to relay progress
updates. The cross-team communication was generally excellent and assistance was
provided whenever requested.

The auditors achieved an ample degree of coverage within the allotted time frame. In
context, the source code of both work packages was compositionally moderate. The smart
contracts are written in Solidity while the off-chain aspect of WP2 is written in Rust.
Positively, the respective code bases were well organized upon inspection.

The smart contracts were reviewed for common vulnerabilities that affect Solidity
specifically:

• The first area of concern was reentrancy issues. Cure53 found that the smart
contracts perform external calls almost exclusively after performing all state-
changing operations to the contract itself, which tends to rule out reentrancy flaws
by default. Despite strenuous efforts in this area, the test team was unable to
discover any connected problems.

• Oftentimes, Solidity contracts suffer from arithmetic errors due to loss of precision,
resulting from an incorrect order of arithmetic operations. Furthermore, former
versions of Solidity neglect to check for overflow and underflow situations.
Nevertheless, the assessors verified that the smart contracts exhibit negligible
attack surface with regards to these circumstances.

• The team also stringently investigated the visibilities and modifiers of the contract
functions. However, the conclusion was made that the smart contracts do not
expose any mechanisms that would otherwise widen the attack surface, contributing
to the robust overall impression.

• Another focus aspect was the likelihood of DoS situations and griefing attacks,
which could be attempted by threat actors in order to disrupt or modify the behavior
of smart contracts. The team explored this vulnerability angle in depth, discovering
several points of contention. A malicious LP could either render Onramp smart
contracts permanently redundant (see ticket BOB-02-010) or modify parameters

Cure53, Berlin · Apr 30, 24 14/16

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

such as gratuity or fees, therefore wasting operator gas or even preventing them
from further Onramp use (as highlighted in ticket BOB-02-009).

• Cure53 also determined that the Onramp contract implements a guard condition
prior to executing swaps. The update mechanism leverages the block.timestamp
value; this is generally discouraged for security sensitive operations since miners
may influence the value, as discussed in ticket BOB-02-005. The update guard
intends to protect relayers from executing swaps while an LP modifies contract
parameters, owing to the fact that LPs could modify parameters in a malicious and
possibly covert fashion (see BOB-02-009). Moreover, testing identified that the
update guard was faulty and permitted swap execution while updates were in
progress (see BOB-02-007). Similarly to deficiencies described in the previous
paragraph, the developer team has already taken swift action to remediate this.

• Elsewhere, the audit team searched for missing authorization checks and attacks
leading to impersonations. Here, it was positively concluded that the contracts
successfully nullify these compromise strategies. Cure53 also sought to pinpoint any
logical flaws such as the assignment of absolute approval values, for instance,
though no associated behaviors were noted.

Moving on, the off-chain Rust codebase was subjected to rigorous examinations by the test
team:

• The Rust API and Bitcoin client frontend was assessed by focusing on two key
targets: the correctness of cryptography-relevant operations and the
security/soundness of the exposed server API.

• As part of the Rust cryptography analysis, heightened emphasis was placed on
guaranteeing the correctness of the Merkle tree implementation logic and Bitcoin
chain querying operations. Cure53’s endeavors revealed two minor detriments in the
block stream observer logic, as indicated in tickets BOB-02-003 and BOB-02-004.

• Cure53’s vetting procedures against the Rust API code was ultimately unfruitful. The
API was considered minimal and self-contained, while no obvious avenues for third-
party exploitation were detected. Nevertheless, as with any API, security against
abuse or DoS depends on optimally gated deployment and access controls.

• The application employs a PostgreSQL database for persistence, thus the testers
estimated the application’s susceptibility to SQL injection vulnerabilities. Positively,
the implementation was deemed risk averse in this respect.

Cure53, Berlin · Apr 30, 24 15/16

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

• Cure53 also investigated whether the application exposes potential sinks for
Remote Code Execution (RCE). One sole instance of this was observed concerning
the Bitcoin daemon, though the test team was unable to exploit this sink via a
malicious actor.

In summary, Cure53 can confirm that the provided source code exhibits satisfactory security
proficiency under the current configuration. Many of the identified issues correspond to
hardening recommendations that will provide defense-in-depth and further protect assets
against malicious actors outside of the current threat model. The development team has
successfully minimized the exposed attack surface and negated most vulnerability classes
that could plausibly affect the characteristics in-scope for this audit. Lastly, the in-house
team’s diligence toward addressing some of the pressing concerns soon after detection is
commendable and corroborates the argument that their framework is progressing in an
upward trajectory from a security viewpoint.

Cure53 would like to thank Gregory Hill, Sander Bosma, and Dominik Harz from the
Distributed Crafts Ltd. team for their excellent project coordination, support, and assistance,
both before and during this assignment.

Cure53, Berlin · Apr 30, 24 16/16

https://cure53.de/
mailto:mario@cure53.de

	Review-Report BOB Onramp Smart Contracts 04.2024
	Index
	Introduction
	Scope
	Identified Vulnerabilities
	BOB-02-003 WP2: Integer overflow in block stream observer (Low)
	BOB-02-004 WP2: DoS in block stream observer (Low)
	BOB-02-009 WP2: Gas waste and potential griefing via gratuity & fee (Low)
	BOB-02-010 WP2: Permanent DoS of Onramp contract by LP (Medium)

	Miscellaneous Issues
	BOB-02-005 WP2: Block timestamp dependence of update modifier (Info)
	BOB-02-007 WP2: Insufficient update guard for swap execution (Info)

	Conclusions

