
BOB Staking Security Review
Pashov Audit Group

Conducted by: Ch_301, Hals, Oblivionis
March 4th 2025 - March 7th 2025

Contents
1. About Pashov Audit Group
2. Disclaimer
3. Introduction
4. About BOB Staking
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings

8.1. Medium Findings
[M-01] Failure to claim remaining unclaimedRewards
for unbonded stakes
[M-02] Incorrect check on the staker address in
UnbondableStake.stake()

8.2. Low Findings
[L-01] DepositRewardTokens issue due to fee-on-transfer
tokens
[L-02] InstantWithdraw transfers stake to owner instead
of specified receiver
[L-03] Missing _disableInitializers() in the constructor
[L-04] Precision loss in _calculateRewards

1

2

2

2

2

3

3
3
4

4

5

7

7

7

8

10

10

10

11

11

1. About Pashov Audit Group
Pashov Audit Group consists of multiple teams of some of the best smart contract
security researchers in the space. Having a combined reported security
vulnerabilities count of over 1000, the group strives to create the absolute very best
audit journey possible - although 100% security can never be guaranteed, we do
guarantee the best efforts of our experienced researchers for your blockchain
protocol. Check our previous work here or reach out on Twitter @pashovkrum.

2. Disclaimer
A smart contract security review can never verify the complete absence of
vulnerabilities. This is a time, resource and expertise bound effort where we try to
find as many vulnerabilities as possible. We can not guarantee 100% security after
the review or even if the review will find any problems with your smart contracts.
Subsequent security reviews, bug bounty programs and on-chain monitoring are
strongly recommended.

3. Introduction
A time-boxed security review of the bob-collective/bob-staking repository was
done by Pashov Audit Group, with a focus on the security aspects of the
application's smart contracts implementation.

4. About BOB Staking
BOB Staking is a staking system that implements an unbonding mechanism and
instant withdrawal features. Users can stake tokens, earn rewards, and choose
between a standard unbonding process or instant withdrawal with a penalty.

2

https://github.com/pashov/audits
https://twitter.com/pashovkrum

5. Risk Classification

Severity Impact: High Impact: Medium Impact: Low

Likelihood: High Critical High Medium

Likelihood: Medium High Medium Low

Likelihood: Low Medium Low Low

5.1. Impact

High - leads to a significant material loss of assets in the protocol or significantly
harms a group of users.
Medium - only a small amount of funds can be lost (such as leakage of value) or a
core functionality of the protocol is affected.
Low - can lead to any kind of unexpected behavior with some of the protocol's
functionalities that's not so critical.

5.2. Likelihood

High - attack path is possible with reasonable assumptions that mimic on-chain
conditions, and the cost of the attack is relatively low compared to the amount of
funds that can be stolen or lost.
Medium - only a conditionally incentivized attack vector, but still relatively
likely.
Low - has too many or too unlikely assumptions or requires a significant stake by
the attacker with little or no incentive.

3

5.3. Action required for severity levels

Critical - Must fix as soon as possible (if already deployed)
High - Must fix (before deployment if not already deployed)
Medium - Should fix
Low - Could fix

6. Security Assessment Summary
review commit hash - ab1b12f91edd7b147cbbccb8e71aa154087d2408

fixes review commit hash - f1d999826b4081f200a8c64059d6b49d19b4a9ca

Scope

The following smart contracts were in scope of the audit:

BonusWrapper

SafeERC20Ext

UnbondableStake

Address

CurrencyTransferLib

4

https://github.com/bob-collective/bob-staking/tree/ab1b12f91edd7b147cbbccb8e71aa154087d2408
https://github.com/bob-collective/bob-staking/tree/f1d999826b4081f200a8c64059d6b49d19b4a9ca

7. Executive Summary
Over the course of the security review, Ch_301, Hals, Oblivionis engaged with
BOB to review BOB Staking. In this period of time a total of 6 issues were
uncovered.

Protocol Summary
Protocol Name BOB Staking

Repository https://github.com/bob-collective/bob-staking

Date March 4th 2025 - March 7th 2025

Protocol Type Token Staking

Findings Count
Severity Amount

Medium 2

Low 4

Total Findings 6

5

Summary of Findings
ID Title Severity Status

[M-01]
Failure to claim remaining
unclaimedRewards for unbonded
stakes

Medium Resolved

[M-02] Incorrect check on the staker address
in UnbondableStake.stake() Medium Resolved

[L-01] DepositRewardTokens issue due to
fee-on-transfer tokens Low Resolved

[L-02] InstantWithdraw transfers stake to
owner instead of specified receiver Low Resolved

[L-03] Missing _disableInitializers() in the
constructor Low Resolved

[L-04] Precision loss in _calculateRewards Low Acknowledged

6

8. Findings

8.1. Medium Findings

[M-01] Failure to claim remaining
unclaimedRewards for unbonded stakes

Severity
Impact: Medium

Likelihood: Medium

Description
In the UnbondableStake.unbond() function, when stakers want to withdraw
their stake via unbond() or instantWithdraw() , the
_claimRewards(_stakeMsgSender(), false) is called to collect any unclaimed
rewards and add them to the staked amount of the user to be withdrawn. The
shouldRevert flag indicates whether the call should revert if the rewards to be
paid to the staker are zero, where this flage is set to false to indicate the
reverting is not allowed in this case:

function unbond() external {
 //...
 _claimRewards(_stakeMsgSender(), false);

 uint256 amountStaked = stakers[_stakeMsgSender()].amountStaked;
 if (amountStaked == 0) revert ZeroTokenUnbond();

 stakers[_stakeMsgSender()].amountStaked = 0;
 //...
 }

The rewards to be paid to the staker can be zero if the contract's balance of
reward tokens is zero (rewardTokenBalance = 0):

7

function _claimRewards(address receiver, bool shouldRevert) internal {
 //...
 if (stakers[receiver].amountStaked == 0) revert NoRewardsError(); <@2

 uint256 rewards = stakers[receiver].unclaimedRewards +
 _calculateRewards(receiver);

 uint256 rewardsToPay = rewards;

 if (rewards > rewardTokenBalance) {
 rewardsToPay = rewardTokenBalance;
 } // Leaving amount for future possible withdraw

 if (rewardsToPay == 0) { <@1
 if (shouldRevert) revert InsufficientContractRewardBalance();
 else return;
 }

 stakers[receiver].unclaimedRewards = rewards - rewardsToPay;
 stakers[receiver].amountStaked += rewardsToPay;

 //...
 }

If the contract reward token balance is zero or insufficient to cover the staker
rewards, the rewards entitled to the staker will not be fully added to the staked
amount that will be withdrawn. The unbond() and instantWithdraw()
functions set stakers[_stakeMsgSender()].amountStaked = 0 , and if the
contract’s reward token balance becomes sufficient again later, the user who
unbonded (or called instantWithdraw()) while there was insufficient
reward token balance will not be able to claim their remaining unclaimed
rewards via the claimRewards() function, as the _claimRewards() function
checks if amountStaked > 0 (@1), so the user will not be able to claim these
remaining rewards unless they stake again -> then create unbond -> then
withdraw.

Recommendations
Consider implementing a mechanism to track the unclaimed rewards that
haven't been moved to the amountStaked of the user, where these remaining
unclaimed rewards should be claimable later regardless of the user's staked.
Also, you can allow users to set the value of bool shouldRevert in
_claimRewards() function.

[M-02] Incorrect check on the staker
address in UnbondableStake.stake()

8

Severity
Impact: Medium

Likelihood: Medium

Description
In the UnbondableStake.stake() function, the contract includes a check to
prevent users from staking again if they have already requested to unbond their
tokens but not finalized their withdrawals, where the check is currently
performed on the caller address (_stakeMsgSender())

function stake(uint256 _amount, address receiver) external nonReentrant {
 //...
 if (unbondEndTimes[_stakeMsgSender()] != 0) {
 revert UnbondAlreadyStarted();
 }
 //...
 }

The issue with this implementation is that the check should be performed on
the receiver address (the address where the tokens will be staked on behalf
of) instead of the caller address. This incorrect check allows any user to bypass
the unbondEndTimes check by staking from a different address or calling the
UnbondableStake.stake() function indirectly via the BonusWrapper.stake()
function, even if they have initiated an unbonding process.

Recommendations
Update the check to verify the unbondEndTimes on the receiver address instead
of the caller address:

function stake(uint256 _amount, address receiver) external nonReentrant {
 //...
- if (unbondEndTimes[_stakeMsgSender()] != 0) {
+ if (unbondEndTimes[receiver] != 0) {
 revert UnbondAlreadyStarted();
 }
 //...
 }

9

8.2. Low Findings

[L-01] DepositRewardTokens issue due to fee-
on-transfer tokens

The depositRewardTokens() function, as currently implemented, likely
assumes that the amount of tokens transferred into the contract matches the
amount recorded for reward distribution. This assumption is vulnerable to fee-
on-transfer (FoT) tokens. When an FoT token is deposited, the actual amount
received by the contract will be less than the amount specified in the
safeTransferFrom() function call due to the automatic deduction of fees
during the transfer. this will affect both rewardTokenBalance and
stakingTokenBalance values. The BonusWrapper.sol#stake() has the same
issue.

To resolve this, use the same logic in UnbondableStake.sol#stake() function.

[L-02] InstantWithdraw transfers stake to
owner instead of specified receiver

In the UnbondableStake.instantWithdraw() function, stakers are allowed to
withdraw their stakes with a penalty, where the function takes a _receiver
address, which is supposed to receive the withdrawn stake. However, the
function incorrectly transfers the staked tokens to the caller (the stake owner)
instead of the specified _receiver address:

function instantWithdraw(address _receiver) external nonReentrant {
 //...
 IERC20(stakingToken).safeTransfer(_stakeMsgSender(), _amountForUser);
 //...
 }

Recommendation: update the instantWithdraw() function to transfer the
staked tokens to the receiver address instead of the caller’s address:

10

function instantWithdraw(address _receiver) external nonReentrant {
 //...
- IERC20(stakingToken).safeTransfer(_stakeMsgSender(), _amountForUser);
+ IERC20(stakingToken).safeTransfer(_receiver, _amountForUser);
 //...
 }

[L-03] Missing _disableInitializers() in
the constructor

In the UnbondableStake contract, the UUPSUpgradeable pattern is used, but
the constructor does not call the _disableInitializers() function. As per
best practices outlined by OpenZeppelin, the initialize() function in an
upgradeable contract should be disabled within the constructor to prevent it
from being called by anyone.

Recommendation: add _disableInitializers() call in the constructor of the
upgradeable contract:

constructor() {
 _disableInitializers();
}

[L-04] Precision loss in _calculateRewards
There are two rounding operations in
UnbondableStake::_calculateRewards() . If the protocol uses a lower-decimal
token and a lower reward numerator, this rounding will cause users' rewards to
be reduced. If users claim rewards too frequently, they will continuously fail to
receive rewards, and their rewards during the period will be permanently lost.

uint256 rewardsProduct = (endTime - startTime) *
 (staker.amountStaked) *
 (condition.rewardRatioNumerator);

 uint256 rewardsSum = _rewards +
 ((rewardsProduct / condition.timeUnit) /
 condition.rewardRatioDenominator);

 _rewards = rewardsSum;

Consider the following scenario: An UnbondableStake uses the value in test
file:

11

1-day time unit -> timeUnit = 86400
1 rewardRatioNumerator
100 rewardRatioDenominator.
WBTC staking token -> 8 decimals

Each claim may result in a loss of up to 86400/100 = 86 satoshi. If we consider
the mathematical expectation (where each rounding loss is a value between 0
and 86400), each claim results in an average loss of 43 satoshis. Every 23 calls
will result in a loss of 1 USD.

If using an 18-decimal token, no fix is necessary. If you want to use a lower
decimal token, you can:

Specify a higher rewardRatioNumerator and rewardRatioDenominator.
Modify the protocol logic so that if current reward is rounded to 0,
stakers[_staker].timeOfLastUpdate is not updated.

12

