Pashov Audit Group

BOB Staking
Security Review

2222222222222222222222222222222

‘ b= ‘ Pashov Audit Group BOB Staking Security Review

Contents
AN o To 10N ol o= 1] g Lo AV A A U o [A € o U o R PP 3
72 T 1=l =1 1 o = ol PP 3
3. RISK ClassifiCation ouiueieii ittt ea 3
N o To T UL ol = 10 = I =] (] e PPN 4
IR = (ST oW [A2 Y U o o0 21T /2 4
O 1 T 1T 5
Critical fINAINGS oo 7
[C-01] instantWithdraw() does not transfer _amountForContract , locking tokenscccveenns 7
[C-02] Stakes not forwarded post-delegation, positions unwithdrawable ..., 10
Highfindings ..o n
[H-01] Bonuses obtainable without proper locking due to flawed lock periodcocoiiiiiiiiiiiinnnns 11
[H-02] Delegating to address(0) empties contract via alterGovernanceDelegatee() ..cvivveverernens 14
[M-01] Instant withdraw lets users self-fund residuals with their own penaltycoooiiiiiiiiinnn, 16
[M-02] Condition setter functions are broken ... e 17
[M-03] DoS of staking due to unguarded receiver 10Ck periodcocvoiiiiiiiiiiiii e 19
LOW fINAINGS .o 21
[L-01] Residual claim reverts on shortage ...ociiiiiiiiiiiii e 21
[L-02] Expired |0Ck acCepts NEW SEaKE cuiiiieiii it et e e e e e e e e e a e e n e e e e eenneneens 21
[L-03] Missing validation allows bonusEndTime to be set to past timestampsccoceiviiiiiiiininnnnns 22
[L-04] Missing events 0N Key Sellers .o.iiiiiiii i 22
[L-05] Multistep division leads to 10SS Of PreCiSION iiiviiiiiiii i aaeaaeas 22
[L-06] withdrawRewardTokens() allows excess withdrawal ignoring residualRewardBalance 23
[L-07] TIME_UNIT iS NOt €XACLIY ONE YA .iuiitiiitiiitiiit ittt ettt ea et ea e e et e e et e e s ee e anennaneens 24
[L-08] Users cannot opt out of hybrid node delegationcooiiiiiiiiiiiii s 24
[L-09] Unguarded claimRewards() can be leveraged to deny Instant withdrawal fees 25
[L-10] In _setStakingCondition() sums can exceed REWARD_RATIO_DENOMINATOR ...cccvevererenererenss 26
[L-11] Residual recycling lets attackers farm wrapper bonus without new capitalcoceviiininnns 28
[L-12] Anyone can trigger others' claims causing front-running reward 10SS ccciiiiiiiiiiiiiiennns 29
[L-13] Boost window mis-scaled dividing by TIME_UNIT not 30 daysccoviviniiiiiiiiinininiiineneneans 29

2/ 29

‘ b= ‘ Pashov Audit Group BOB Staking Security Review

1. About Pashov Audit Group

Pashov Audit Group consists of 40+ freelance security researchers, who are well proven in the
space - most have earned over $100k in public contest rewards, are multi-time champions or
have truly excelled in audits with us. We only work with proven and motivated talent.

With over 300 security audits completed — uncovering and helping patch thousands of
vulnerabilities — the group strives to create the absolute very best audit journey possible.
While 100% security is never possible to guarantee, we do guarantee you our team's best
efforts for your project.

Check out our previous work here or reach out on Twitter @pashovkrum.

2. Disclaimer

A smart contract security review can never verify the complete absence of vulnerabilities. This
is a time, resource and expertise bound effort where we try to find as many vulnerabilities as
possible. We can not guarantee 100% security after the review or even if the review will find
any problems with your smart contracts. Subsequent security reviews, bug bounty programs
and on-chain monitoring are strongly recommended.

3. Risk Classification

Severity Impact: High Impact: Medium Impact: Low

Likelihood: Medium m
Likelihood: Low

Impact

¢ High - leads to a significant material loss of assets in the protocol or significantly harms a
group of users

e Medium - leads to a moderate material loss of assets in the protocol or moderately harms a
group of users

e Low - leads to a minor material loss of assets in the protocol or harms a small group of users

Likelihood

¢ High - attack path is possible with reasonable assumptions that mimic on-chain conditions,
and the cost of the attack is relatively low compared to the amount of funds that can be stolen
or lost

e Medium - only a conditionally incentivized attack vector, but still relatively likely

e Low - has too many or too unlikely assumptions or requires a significant stake by the
attacker with little or no incentive

3/29

https://github.com/pashov/audits
https://twitter.com/pashovkrum

‘ = ‘ Pashov Audit Group BOB Staking Security Review

4. About BOB Staking

BOB Staking is a staking system that implements an unbonding mechanism and instant
withdrawal features. Users can stake tokens, earn rewards, and choose between a standard
unbonding process or instant withdrawal with a penalty.

5. Executive Summary

A time-boxed security review of the bob-collective/bob-staking repository was done by Pashov
Audit Group, during which zark, Tejas Warambhe, IvanFitro, afriauditor engaged to review BOB
Staking. A total of 20 issues were uncovered.

Protocol Summary

Project Name BOB Staking
Protocol Type Token Staking
Timeline October 18th 2025 - October 21st 2025

Review commit hash:
e 73158d3c424bdc7c0402bf59c6e42f4dd261f9d6
(bob-collective/bob-staking)

Fixes review commit hash:
® 44842c634a3a4b87b889384de2f648c8e4fab1b8
(bob-collective/bob-staking)

Scope

BobStaking.sol BonusWrapper.sol

4/ 29

https://github.com/bob-collective/bob-staking/tree/73158d3c424bdc7c0402bf59c6e42f4dd261f9d6
https://github.com/bob-collective/bob-staking/tree/44842c634a3a4b87b889384de2f648c8e4fab1b8

‘ b= ‘ Pashov Audit Group BOB Staking Security Review

6. Findings

Findings count

Severity Amount
Critical 2

High 2
Medium 3

Low 13
Total findings 20

Summary of findings

ID Title Severity Status

instantWithdraw() does not transfer ™
[C-01] . Critical Resolved
_amountForContract , locking tokens

Stakes not forwarded post-delegation, positions "
[C-02] . Critical Resolved
unwithdrawable

Bonuses obtainable without proper locking due to

[H-01] .
flawed lock period

Resolved

Delegating to address(0) empties contract via

[H-02] Resolved

alterGovernanceDelegatee ()

Instant withdraw lets users self-fund residuals
[M-01] . . Acknowledged
with their own penalty

[M-02] Condition setter functions are broken Resolved
DoS of staking due to unguarded receiver lock

[M-03] . Resolved
period

[L-01] Residual claim reverts on shortage Acknowledged

[L-02] Expired lock accepts new stake Acknowledged

Missing validation allows bonusEndTime to be
[L-03] . Low Resolved
set to past timestamps

'

[L-04] Missing events on key setters ow Acknowledged

[L-05] Multistep division leads to loss of precision Low Acknowledged

5/29

‘ ‘ Pashov Audit Group

BOB Staking Security Review

ID Title Severity Status
withdrawRewardTokens () allows excess

[L-06]) . . } Acknowledged
withdrawal ignoring residualRewardBalance

[L-07] TIME_UNIT is not exactly one year Resolved

[L-08] Users cannot opt out of hybrid node delegation Low Resolved
Unguarded claimRewards() can be leveraged

[L-09] . Low Resolved
to deny Instant withdrawal fees
In _setStakingCondition() sums can exceed

[L-10] Acknowledged

REWARD_RATIO_DENOMINATOR

Residual recycling lets attackers farm wrapper

[L-11] . . Low Resolved
bonus without new capital
Anyone can trigger others' claims causing front-

[L-12] . Resolved
running reward loss
Boost window mis-scaled dividing by TIME UNIT

[L-13] - Low Acknowledged

not 30 days

6/29

Pashov Audit Group BOB Staking Security Review

Critical findings

[C-01] instantWithdraw() does nottransfer
_amountForContract , locking tokens

Severity

Impact: High

Likelinood: High
Description

instantWithdraw() is used to immediately withdraw all staked tokens, applying a penalty
for the early withdrawal.

function instantWithdraw(address _receiver) external nonReentrant {
if (stakers[_stakeMsgSender ()] .unlockTimestamp > block.timestamp) {
revert TokensLocked();

if (unbondEndTimes[_stakeMsgSender ()] != 0) {
revert UnbondAlreadyStarted();

_claimRewards (_stakeMsgSender (), false);

uint256 amount = stakers[_stakeMsgSender()].amountStaked;
if (amount == 0) revert NotEnoughBalance();

stakingTokenBalance -= amount;

// Calculate the penalty amount to the user
uint256 _amountForUser = (amount * instantWithdrawalRate) / 100;
uint256 _amountForContract = amount - _amountForUser;

rewardTokenBalance += _amountForContract;

@> if (stakers[_stakeMsgSender()].governanceDelegatee != address(0)) {

// If the user has a governance delegatee, the tokens are stored in the surrogate
contract

DelegationSurrogate surrogate =
storedSurrogates[stakers[_stakeMsgSender ()] .governanceDelegatee];

IERC20(stakingToken) .safeTransferFrom(address(surrogate), _receiver,

_amountForUser) ;
} else {
// If the user does not have a governance delegatee, the tokens are stored in this
contract
IERC20(stakingToken).safeTransfer(_receiver, _amountForUser);
}

7/ 29

Pashov Audit Group BOB Staking Security Review

delete stakers[_stakeMsgSender()];

emit TokensWithdrawn(_stakeMsgSender (), _receiver, amount);

If a user delegates their tokens, the _amountForUser is transferred from the surrogate to
the receiver. The issue is that _amountForContract is not transferred from the surrogate to
the BobStaking contract, causing those tokens to become permanently stuck in the
surrogate.

Moreover, the penalty is added to rewardTokenBalance but never actually transferred to the
contract, which causes rewardTokenBalance to reflect a higher value than the contract truly
holds.

To better illustrate the issue, copy the following POC into BobStaking.t.sol

For the test to run properly, set the storedSurrogates mapping to public and add the
following import to the test file: import {DelegationSurrogate} from "@tally/staker/

DelegationSurrogate.sol"

function test PenaltyIsNotTransferedToBobStakingContracts() public {
// Deposit reward tokens
stakingToken.approve (address(stakeContract), 1000 ether);
stakeContract.depositRewardTokens (1000 ether);

uint256 stakedAmount = 1 ether;
vm.prank (stakerOne) ;
stakeContract.stake(stakedAmount, stakerOne, 0);
address delegatee = makeAddr ("delegatee one");
vm.prank (address(this));
address[] memory whitelistedGovernanceDelegateesToAdd = new address[] (1) ;
whitelistedGovernanceDelegateesToAdd[0] = delegatee;
stakeContract.setWhitelistedDelegatees (
whitelistedGovernanceDelegateesToAdd, new address[](0), new address[](0), new

address|[](0)
)5

uint256 timeOfStake = vm.getBlockTimestamp() ;

vm.prank (stakerOne) ;
stakeContract.alterGovernanceDelegatee(delegatee);

assertEq(stakingToken.getVotes(delegatee), stakedAmount) ;
uint256 contractBalanceBefore = stakingToken.balanceOf (address(stakeContract));

vm.prank (stakerOne) ;
stakeContract.instantWithdraw(stakerOne) ;

uint256 contractBalanceAfter = stakingToken.balanceOf (address(stakeContract));
DelegationSurrogate surrogate = stakeContract.storedSurrogates(delegatee);

uint256 surrogateBalance = stakingToken.balanceOf (address(surrogate));

8/29

Pashov Audit Group BOB Staking Security Review

assertEq(contractBalanceBefore, contractBalanceAfter);
assertEq(surrogateBalance, stakedAmount / 2);

Recommendations

To solve the issue, transfer _amountForContract tothe BobStaking contract.

function instantWithdraw(address _receiver) external nonReentrant {
if (stakers[_stakeMsgSender()].unlockTimestamp > block.timestamp) ({
revert TokensLocked() ;

if (unbondEndTimes[_stakeMsgSender ()] != 0) {
revert UnbondAlreadyStarted() ;

_claimRewards (_stakeMsgSender (), false);

uint256 amount = stakers[_stakeMsgSender()].amountStaked;
if (amount == 0) revert NotEnoughBalance();

stakingTokenBalance -= amount;

// Calculate the penalty amount to the user
uint256 _amountForUser = (amount * instantWithdrawalRate) / 100;
uint256 _amountForContract = amount - _amountForUser;

rewardTokenBalance += _amountForContract;

if (stakers[_stakeMsgSender ()].governanceDelegatee != address(0)) {
// If the user has a governance delegatee, the tokens are stored in the surrogate
contract
DelegationSurrogate surrogate =
storedSurrogates[stakers[_stakeMsgSender ()] .governanceDelegatee];

IERC20(stakingToken) .safeTransferFrom(address(surrogate), receiver,
_amountForUser) ;
iF IERC20(stakingToken) .safeTransferFrom(address(surrogate), address(this),
_amountForContract) ;
} else {
// If the user does not have a governance delegatee, the tokens are stored in this
contract
IERC20(stakingToken) .safeTransfer(_receiver, _amountForUser);
}

delete stakers[_stakeMsgSender()];

emit TokensWithdrawn(_stakeMsgSender (), _receiver, amount);

9/29

BOB Staking Security Review

— ‘ Pashov Audit Group

[C-02] Stakes not forwarded post-delegation, positions
unwithdrawable

Severity

Impact: High

Likelihood: High

Description

In BobStaking , once a user delegates governance via alterGovernanceDelegatee , their

existing stake is moved to a DelegationSurrogate . However, later calls to
stake(_amount, receiver, lockPeriod) keepnew tokens inthe stakingcontract:

IERC20(_stakingToken) .safeTransferFrom(_stakeMsgSender (), address(this), _amount);

stakers[receiver].amountStaked += _amount;

No forwarding occurs when stakers|[receiver].governanceDelegatee != address(0)
Exit paths then assumeall amountStaked sits in the surrogate:

° unbond() tries safeTransferFrom(surrogate, this, amountStaked);
° instantWithdraw() tries safeTransferFrom(surrogate, _receiver,

_amountForUser) ;

If part of the stake stayed in this contract (common after re-staking), the surrogate doesn’t
hold enough (and hasn't approved), so these calls revert. The user cannot unbond or instant-

withdraw — funds are effectively stuck.

Minimal repro

1. Stake 100 — delegate — 100 moved to surrogate.
2. Stake 50 again — 50 remains in staking contract; amountStaked = 150 .

3. Call unbond() or instantWithdraw() — contract tries to pull 150 from surrogate —

revert.

Recommendations

¢ Enforce a single custody location when delegated (preferred): In stake() , if
governanceDelegatee != 0 , immediately forward amount to the user’s surrogate:

solidity if (stakers[receiver].governanceDelegatee != address(0))

{ DelegationSurrogate s =
storedSurrogates[stakers[receiver].governanceDelegatee];
TERC20 (stakingToken) .safeTransfer (address(s), _amount); }

10/ 29

Pashov Audit Group BOB Staking Security Review

High findings

[H-01] Bonuses obtainable without proper locking due to flawed lock
period

Severity

Impact: High

Likelihood: Medium

Description

stake () in BonusWrapper allows users to lock their tokens for a specified duration in
exchange for a staking bonus.

function stake(uint256 amount, address receiver, uint80 lockPeriod) external nonReentrant {
// If the bonus period has ended, the lock period must be 0
if (lockPeriod != 0 && bonusEndTime < block.timestamp) {
revert BonusPeriodEnded();

// First transfer the user's tokens to this contract

uint256 balanceBefore = IERC20(stakingToken) .balanceOf (address(this));
IERC20(stakingToken).safeTransferFrom(msg.sender, address(this), amount);

uint256 actualAmount = IERC20(stakingToken).balanceOf (address(this)) - balanceBefore;

uint256 bonus = calculateBonus(actualAmount, lockPeriod);
uint256 totalAmount;
if (bonus > 0) {
// try to claim the bonus for the user from the reward owner, revert if it fails.
Reward owner needs to top up their account
IERC20(stakingToken).safeTransferFrom(rewardOwner, address(this), bonus);
totalAmount = amount + bonus;
emit TokensBonus(receiver, bonus);
} else {
totalAmount = amount;

//staking is BobStaking
stakingToken.approve (address(staking), totalAmount);
staking.stake(totalAmount, receiver, lockPeriod);

This invokes the “stake()" in BobStaking.

“Tsolidity
function stake(uint256 _amount, address receiver, uint80 lockPeriod) external nonReentrant {
if (_amount == 0) revert ZeroTokenStake();

// lock period must be valid
//this needs to be sync with the lockPeriods in BonusWrapper

11/ 29

Pashov Audit Group BOB Staking Security Review

if (!_contains(lockPeriods, lockPeriod)) {
revert InvalidLockPeriod();
}
// If the user already has a lock period, the lock period supplied must be the same as
the existing lock period
if (stakers[receiver].lockPeriod != 0 && stakers[receiver].lockPeriod != lockPeriod) {
revert InconsistentLockPeriod();

}

if (unbondEndTimes[receiver] != 0) {
revert UnbondAlreadyStarted();

}

address _stakingToken = stakingToken;

if (stakers[receiver].amountStaked > 0) {
_updateUnclaimedRewardsForStaker (receiver) ;

} else {
stakers[receiver].timeOfLastUpdate = uint80(block.timestamp) ;
stakers[receiver].conditionIdOflastUpdate = nextConditionId - 1;
stakers[receiver].lockPeriod = lockPeriod;
stakers[receiver].unlockTimestamp = uint80(block.timestamp) + lockPeriod;

IERC20(_stakingToken).safeTransferFrom(_stakeMsgSender (), address(this), _amount);

stakers[receiver].amountStaked += _amount;
stakingTokenBalance += _amount;

emit TokensStaked(receiver, _amount);

If it’s the first time the user stakes, their information is stored in the stakers mapping. For
subsequent stakes, the provided 1lockPeriod must match the existing one. However, this
condition can be bypassed if the user first stakes with TlockPeriod = 0 and later stakes with
a different lockPeriod

if (stakers[receiver].lockPeriod != 0 && stakers[receiver].lockPeriod != lockPeriod) {
revert InconsistentlLockPeriod();

A user can first stake with lockPeriod = 0 and later stake again with a different
lockPeriod (e.g. 21 * 30 days). The contract accepts the new TlockPeriod because
stakers[receiver].lockPeriod == 0 , the check never triggers, and the function does not

revert.

Since unlockTimestamp is only set on the first stake, users will use the initial lockPeriod
but still receive the bonus for locking, even though they are not actually locking their tokens,
as unlockTimestamp is only initialized during the first stake.

An attacker can exploit this by first staking with 1lockPeriod = 0 , then staking again with a
long lock period to obtain the maximum bonus without actually locking their tokens.

12/ 29

S ‘ Pashov Audit Group BOB Staking Security Review

They can still withdraw immediately via instantWithdraw() (subject only to the penalty),
effectively gaining the bonus while avoiding the intended lock. Alternatively, they can call

unbond () and wait for the unbonding period to withdraw, achieving the same advantage
without ever truly locking their tokens.

Additionally, this flaw also allows other timing-related exploits observed in similar staking
scenarios:

e A user can stake a minimal amount with the shortest lock period (e.g., 3 months) and near
the end of this lock, stake a large amount for the same period. Since the unlock time is not
updated, they can withdraw almost immediately while still receiving a large bonus.

e A user can stake a dust amount for a very long lock (e.g., 21 months), wait for it to expire,
then stake a large amount again with the same 1lockPeriod and instantly withdraw, draining
the rewardOwner .

e If the admin later uses BonusWrapper::setBonusEndTime() , attackers can deliberately

keep small stakes active to remain eligible and time their large stakes to maximize bonuses
unfairly.

To reproduce the main issue, copy the following POC into BonusWrapper.t.sol .

function test_FreeBonusWithoutLockingTokens () public {
vm.startPrank(staker) ;

stakingToken.approve (address (bonusWrapper), type(uint256).max) ;

//1ockPeriod = 0
bonusWrapper.stake (400 * 10 ** 18, staker, 0);

//1lockPeriod = 21 * 30 days

vm.expectEmit();

emit BonusWrapper.TokensBonus(staker, 800 * 10 ** 18);
bonusWrapper.stake (400 * 10 ** 18, staker, 21 * 30 days);

stakeContract.unbond() ;

Recommendations

To solve the problem, check if the user has amountStaked > 0 , and if lockPeriod == 0 ,
prevent setting a different lockPeriod .

if (stakers[receiver].lockPeriod != 0 && stakers[receiver].lockPeriod != lockPeriod ||
stakers[receiver].amountStaked > 0 && stakers[receiver].lockPeriod != lockPeriod) {
revert InconsistentlLockPeriod();

Additionally, ensure that when an existing staker deposits more with a non-zero

lockPeriod , the unlockTimestamp is updated or extended to maintain a valid locking
period for all staked tokens. Optionally, a short grace period could be introduced for legitimate
users to add to existing stakes without creating timing advantages.

13/ 29

‘ Pashov Audit Group BOB Staking Security Review

[H-02] Delegatingto address(0) empties contract via
alterGovernanceDelegatee()

Severity

Impact: High

Likelihood: Medium

Description

alterGovernanceDelegatee() is used to delegate a user’s tokens to a delegatee.

function alterGovernanceDelegatee(address newDelegatee) external nonReentrant {
Staker storage staker = stakers[_stakeMsgSender()];
if (staker.governanceDelegatee == newDelegatee) revert DelegateeUnchanged();
if (staker.amountStaked == 0) revert ZeroTokenStake();

//update rewards before
_updateUnclaimedRewardsForStaker (_stakeMsgSender());

DelegationSurrogate newSurrogate = fetchOrDeploySurrogate(newDelegatee);

if (staker.governanceDelegatee == address(0)) {
// First time delegation, staker's tokens are in this contract
IERC20(stakingToken) .safeTransfer (address(newSurrogate), staker.amountStaked);

} else {
// Changing delegation, staker's tokens are in the old surrogate
DelegationSurrogate oldSurrogate = storedSurrogates[staker.governanceDelegatee];
IERC20(stakingToken).safeTransferFrom(address(oldSurrogate), address(newSurrogate),

staker.amountStaked) ;

}

staker.amountStaked = staker.amountStaked;
staker.governanceDelegatee = newDelegatee;

emit GovernanceDelegateeAltered(_stakeMsgSender (), newDelegatee);

alterGovernanceDelegatee() delegates a user’s staked tokens to a delegatee. On a user’s
first delegation, tokens are transferred from the contract to a surrogate; on subsequent
delegations, tokens are moved between surrogates.

A user who previously delegated can set newDelegatee = address(0) . When that happens,
the next transfer pulls tokens from the contract balance (which holds other users’ stakes and
rewards) rather than from the user’s own staked amount.

By repeatedly delegating first to a non-zero address and then to address(0) , an attacker
can progressively drain the contract balance by delegating tokens to the zero address and
transferring the tokens to the surrogate.

To reproduce the issue, copy the following POC into BobStaking.t.sol

14/ 29

Pashov Audit Group BOB Staking Security Review

function test_ContractCanBeCompletelyEmptied() public {
// Deposit reward tokens
stakingToken.approve (address(stakeContract), 1000 ether);
stakeContract.depositRewardTokens (1000 ether);

uint256 stakedAmount = 1 ether;
vm.prank (stakerOne) ;
stakeContract.stake(stakedAmount, stakerOne, 0);

address delegatee = makeAddr ("delegatee one");

vm.prank (address(this));

address[] memory whitelistedGovernanceDelegateesToAdd = new address[](1);

whitelistedGovernanceDelegateesToAdd[0] = delegatee;

stakeContract.setWhitelistedDelegatees (

whitelistedGovernanceDelegateesToAdd, new address[](0), new address[](0), new

address[] (0)

)5

uint256 timeOfStake = vm.getBlockTimestamp();
address delegate® = address(0);
uint256 contractBalanceBefore = stakingToken.balanceOf (address(stakeContract));

vm.prank (stakerOne) ;
stakeContract.alterGovernanceDelegatee(delegatee);

uint256 contractBalanceAfter = stakingToken.balanceOf (address(stakeContract));

//user delegatee correctly the tokens
assertEq(contractBalanceBefore - contractBalanceAfter, stakedAmount) ;

//delegates to address(0)
vm.prank(stakerOne) ;
stakeContract.alterGovernanceDelegatee(delegate0) ;

vm.prank (stakerOne) ;
stakeContract.alterGovernanceDelegatee(delegatee);

contractBalanceAfter = stakingToken.balanceOf (address(stakeContract));

//the contract’s balance should remain constant since tokens are only being moved
between delegates, but currently this is not happening

assertEq(contractBalanceBefore - contractBalanceAfter, 2 * stakedAmount) ;

//rewards are decreased by 1 ether, but this value should remain constant since it

represents reward allocation
assertEq(stakingToken.balanceOf (address(stakeContract)), 999 ether);

Recommendations

To fix the issue, disable delegating to address (0)

15/ 29

‘ 5 ‘ Pashov Audit Group BOB Staking Security Review

[M-01] Instant withdraw lets users self-fund residuals with their own
penalty

Severity

Impact: Medium

Likelihood: Medium

Description

When a user calls BobStaking::instantWithdraw , the function first calls
_claimRewards(msg.sender, false) .If rewardTokenBalance is insufficient,
_claimRewards credits the shortfall to residualRewardBalance[msg.sender] (and may

pay rewardsToPay == 0). Immediately after, instantWithdraw computes the penalty and

adds it to rewardTokenBalance

function instantWithdraw(address _receiver) external nonReentrant {
/...

_claimRewards (_stakeMsgSender (), false); #AUDIT: Here we may increase the residual
rewards

uint256 amount = stakers[_stakeMsgSender()].amountStaked;
if (amount == 0) revert NotEnoughBalance();

stakingTokenBalance -= amount;

// Calculate the penalty amount to the user
uint256 _amountForUser = (amount * instantWithdrawalRate) / 100;
uint256 _amountForContract = amount - _amountForUser;

rewardTokenBalance += _amountForContract; # AUDIT: Here we increase the
rewardTokenBalance, so the before increased residual rewards, will now "self-payed", bypassing
the instant withdraw fee effectively.

/1.

The user can then call claimResidualRewards and withdraw their residual, effectively
paying the instant-withdraw penalty into the pool and immediately reclaiming it as their
residual payout. Net effect is that the penalty is neutralized in whole or in part (limited by the
residual size), undermining the fee’s purpose and shifting costs to other stakers.

In order to understand better this issue, consider this scenario : 1. Pool’s
rewardTokenBalance is near zero; Alice has accrued large unpaid rewards. 2. Alice calls
instantWithdraw(). _claimRewards(..., false) records a big

16/ 29

‘ Pashov Audit Group BOB Staking Security Review

residualRewardBalance[Alice] . 3. instantWithdraw credits the penalty to

rewardTokenBalance . 4. Alice immediately calls claimResidualRewards and withdraws
her residual, which is now funded by the penalty she just paid. 5. Alice’s effective penalty =
max (0, penalty - residual) ;if residual > penalty , she pays no net fee.

Recommendations

It is recommended to net residuals against penalty before crediting the pool. In
instantWithdraw afterthe _claimRewards «call, do:

Step 1. uint256 residual = residualRewardBalance[msg.sender];
Step 2.1. If residual >= penalty: set residualRewardBalance[msg.sender] = residual - penalty;

penalty = 0;
Step 2.2. Else: penalty -= residual; residualRewardBalance[msg.sender] = 0;
Step 3. Only then: rewardTokenBalance += penalty;

This guarantees the user cannot recycle their penalty to pay their own residual.

[M-02] Condition setter functions are broken

Severity

Impact: Medium

Likelihood: Medium

Description

The BobStaking:: setStakingCondition allows the admin to alter the staking conditions
via setRewardRatios() , setWhitelistedDelegatees() , and

setWhitelistedHybridNodeDelegateesViaController () . However, if we carefully observe
the setStakingCondition() , it rightfully persists values for the staking conditions when
passed as a parameter via the functions above:

/// @dev Additional entry point for the hybrid node controller to set the whitelisted hybrid
node delegatees without going through the standard governance process
function setWhitelistedHybridNodeDelegateesViaController (
address[] memory _whitelistedHybridNodeDelegateesToAdd,
address[] memory _whitelistedHybridNodeDelegateesToRemove

) external {
if (!hasRole(HYBRID_NODE_CONTROLLER ROLE, msgSender())) revert NotAuthorized();

StakingCondition storage condition = stakingConditions[nextConditionId - 1];
_setStakingCondition(
condition.baseRewardRatioNumerator,
condition.governanceDelegationRewardRatioNumerator,
condition.hybridNodeDelegationRewardRatioNumerator,

new address[](0), <<@
new address[](0), <<@
_whitelistedHybridNodeDelegateesToAdd, <<@

17/ 29

BOB Staking Security Review

_whitelistedHybridNodeDelegateesToRemove <<@

function setRewardRatios(
uint256 _baseNumerator,
uint256 _governanceDelegationNumerator,
uint256 _hybridNodeDelegationNumerator
) external {
if (! _canSetStakeConditions()) {
revert NotAuthorized();

}
StakingCondition storage condition = stakingConditions[nextConditionId - 1];
if (

_baseNumerator == condition.baseRewardRatioNumerator

&% _governanceDelegationNumerator ==
condition.governanceDelegationRewardRatioNumerator
&% _hybridNodeDelegationNumerator ==
condition.hybridNodeDelegationRewardRatioNumerator
) {
revert RewardRatioUnchanged() ;
}
_setStakingCondition(
_baseNumerator,
_governanceDelegationNumerator,
_hybridNodeDelegationNumerator,

new address[](0), <<@
new address[](0), <<@
new address[](0), <<@
new address[] (0) <<@

emit UpdatedRewardRatios(_baseNumerator, _governanceDelegationNumerator,
_hybridNodeDelegationNumerator) ;
}

However, the setStakingCondition() does not persist the values from the last condition
ID, and directly assigns the parameters as provided to the latest condition ID. Hence, using
setWhitelistedHybridNodeDelegateesViaController() , setRewardRatios() , and
setWhitelistedDelegatees() does not actually add the
_whitelistedHybridNodeDelegateesToAdd addresses to the past whitelisted enumerable
set; similarly, _whitelistedHybridNodeDelegateesToRemove does not remove anything
from the last condition, as no state was carried forward.

Recommendations

It is recommended to persist the values from the last condition ID to ensure the sanity of the
current condition ID.

18/ 29

‘ Pashov Audit Group BOB Staking Security Review

[M-03] DoS of staking due to unguarded receiver lock period

Severity

Impact: Medium

Likelihood: Medium
Description

The BobStaking::stake() and BonusWrapper::stake() allow users to stake in order to
earn rewards and bonuses. These functions allow anyone to stake on behalf of the receiver,
and if a stake contains a non-zero lock period, further stake calls would be required to use a
similar lock period configuration:

function stake(uint256 _amount, address receiver, uint80 lockPeriod) external nonReentrant {
if (_amount == 0) revert ZeroTokenStake();
// lock period must be valid
if (!_contains(lockPeriods, lockPeriod)) {
revert InvalidLockPeriod();
}
// If the user already has a lock period, the lock period supplied must be the same as
the existing lock period
if (stakers[receiver].lockPeriod != 0 && stakers[receiver].lockPeriod != lockPeriod)
{ <<@
revert InconsistentLockPeriod();

However, this logic allows for attackers to frontrun / spam potential stakers using dust
amounts to set their lockPeriod to something unintended. For instance, if a user is willing
to stake for a period of 3 months, an attacker could use a dust amount to stake for a period of
6 or 21 months. Hence, such an attack can lead to a long-term DoS of staking for a user.

Proof Of Concept

Add the following test case inside BobStaking.t.sol

function test_BlockStakesUsingDust() public {
uint256 initialBalance = stakingToken.balanceOf (stakerOne) ;
uint256 stakeAmount = 400 * 10 ** 18;
uint256 dustAmount = 1; // 1 wei dust

vm.prank (stakerOne) ;
stakingToken.approve (address(stakeContract), type(uint256).max);

// Attacker address

address attacker = makeAddr ("attacker");

// Transfer dust to random address

vm.prank (address(this));
stakingToken.transfer (attacker, dustAmount);

19/ 29

‘ Pashov Audit Group BOB Staking Security Review

// approve staking contract
vm.prank (attacker);
stakingToken.approve (address(stakeContract), type(uint256).max);

// Attacker frontruns / randomly stakes dust along with valid amount on behalf of

stakerOne
vm.prank(attacker) ;
stakeContract.stake(dustAmount, stakerOne, 3 * 30 days);

// Check that stakerOne has dustAmount staked

(uint256 amountStaked,, uint256 unlockTimestamp,,) =
stakeContract.getStakeInfo(stakerOne);

assertEq(amountStaked, dustAmount) ;

// Now stakerOne tries to stake valid amount for 6 months, but there is dust already
staked, hence fails with “InconsistentLockPeriod’

vm.prank (stakerOne) ;

vm.expectRevert (BobStaking.InconsistentLockPeriod.selector);

stakeContract.stake(stakeAmount, stakerOne, 6 * 30 days);

Recommendations

Option 1: It is recommended to separate each lock and implement a minimum amount of guard
for staking.

Option 2: Require consent from the receiver on the first stake. E.g., enforce receiver ==
_stakeMsgSender () or accept a receiver-signed EIP-712 permit that authorizes {receiver,

lockPeriod, minAmount, deadline}

20/ 29

‘ Pashov Audit Group BOB Staking Security Review

Low findings

[L-01] Residual claim reverts on shortage

BobStaking::claimResidualRewards reverts whenever rewardTokenBalance is lower
than the user’s residual allocation, while BobStaking:: claimRewards already supports
partial payouts in the same situation. If the pool is briefly underfunded, the residual claim is
blocked entirely, delaying users even though some tokens are available. Align the behavior
with _claimRewards by transferring the available balance, zeroing it out, and leaving the
remainder owed.

function claimResidualRewards (address receiver) external nonReentrant {
uint256 residualBalance = residualRewardBalance[_ stakeMsgSender()];
if (rewardTokenBalance < residualBalance || residualBalance == 0) revert NotEnoughBalance();

residualRewardBalance[_stakeMsgSender ()] = 0;
// The residual rewards come from the reward token balance
rewardTokenBalance -= residualBalance;

IERC20(rewardToken) .safeTransfer (receiver, residualBalance);

emit ResidualRewardsClaimed(receiver, residualBalance);

[L-02] Expired lock accepts new stake

BobStaking::stake lets anyone add stake to a position whose unlockTimestamp has
already passed because the function only blocks deposits when

unbondEndTimes[receiver] != 0 . This means matured positions can be topped up and
then unbonded immediately, bypassing the intended lock period for the fresh deposit. I
recommend reinitialising the lock when a user adds stake to an expired position (e.g., set
unlockTimestamp = max(currentUnlock, block.timestamp + lockPeriod)) or disallowing
top-ups altogether until the user restakes from scratch.

// From BobStaking::stake

if (stakers[receiver].amountStaked > 0) {
_updateUnclaimedRewardsForStaker (receiver);

} else {
stakers[receiver].timeOfLastUpdate = uint80(block.timestamp) ;
stakers[receiver].conditionIdOflastUpdate = nextConditionId - 1;
stakers[receiver].lockPeriod = lockPeriod;
stakers[receiver].unlockTimestamp = uint80(block.timestamp) + lockPeriod;

21/ 29

; ‘ Pashov Audit Group BOB Staking Security Review

[L-03] Missing validation allows bonusEndTime to be set to past
timestamps

The BonusWrapper::setBonusEndTime lacks validation to ensure the new timestamp is in
the future. An administrator could accidentally set bonusEndTime to a past timestamp,

which would cause all next stake attempts with non-zero lock periods to revert with
BonusPeriodEnded ()

function setBonusEndTime(uint256 _bonusEndTime) external onlyOwner {
bonusEndTime = _bonusEndTime;

Consider adding validation to ensure the new timestamp is in the future (or
block.timestamp , in order to block reward distribution).

[L-04] Missing events on key setters

BonusWrapper: :setBonusEndTime , BonusWrapper::setRewardOwner ,

BobStaking: :setWhitelistedDelegatees , and

BobStaking: :setWhitelistedHybridNodeDelegateesViaController update critical
configuration without emitting an event. Consider emitting a dedicated event in each setter
carrying the new parameters so operators and users can track configuration updates reliably.

function setBonusEndTime(uint256 _bonusEndTime) external onlyOwner {
bonusEndTime = _bonusEndTime;

function setRewardOwner (address _rewardOwner) external onlyOwner {
rewardOwner = _rewardOwner;

[L-05] Multistep division leads to loss of precision

The rewards calculation in BobStaking:: calculateRewards() usesthe TIME UNIT and
REWARD RATIO DENOMINATOR variables, which are used to accumulate new rewards:

/// @dev Calculate rewards for a staker.

function _calculateRewards(address _staker) internal view returns (uint256 _rewards) {
/] .

for (uint256 i = _stakerConditionId; i < _nextConditionId; i += 1) {
/] .

uint256 rewardsSum = rewards + ((rewardsProduct / TIME_UNIT) /
REWARD_RATIO_DENOMINATOR) ; <<@

_rewards = rewardsSum;

// Adding the boosted rate to the rewards, this is handled separately from the staking

22 /29

Pashov Audit Group BOB Staking Security Review

conditions
if (block.timestamp < boostedRateEndTime) {
uint256 boostedRewardsProduct =

(block.timestamp - staker.timeOflLastUpdate) * staker.amountStaked *
boostedRateNumerator;

_rewards += ((boostedRewardsProduct / TIME_UNIT) /
REWARD_RATIO DENOMINATOR) ; <<@

} else if (block.timestamp >= boostedRateEndTime && staker.timeOflLastUpdate <
boostedRateEndTime) {

uint256 boostedRewardsProduct =

(boostedRateEndTime - staker.timeOfLastUpdate) * staker.amountStaked *
boostedRateNumerator;

_rewards += ((boostedRewardsProduct / TIME_UNIT) /
REWARD_RATIO_DENOMINATOR) ; <<@

}

However, as we can observe, these calculations involve multistep division, which would result
in a loss of precision twice, leading to a loss of rewards for users over a longer horizon.

It is recommended to divide by TIME UNIT * REWARD RATIO DENOMINATOR instead to ensure
the precision loss happens only once.

[L-06] withdrawRewardTokens () allows excess withdrawal
ignoring residualRewardBalance

When a user calls unbond() , if there is enough rewardTokenBalance , the rewards are
immediately credited to the user and can be claimed once the unbonding period ends. If there
isn't enough balance, the remaining rewards are stored in the residualRewardBalance
mapping. Currently, withdrawRewardTokens () is implemented as:

function withdrawRewardTokens(uint256 _amount) external nonReentrant {
if (!hasRole(DEFAULT_ADMIN_ROLE, _msgSender())) revert NotAuthorized();
if (_amount > rewardTokenBalance) revert NotEnoughBalance();

IERC20(rewardToken) .safeTransfer (_msgSender (), _amount);
rewardTokenBalance -= _amount;

emit RewardTokensWithdrawnByAdmin(rewardTokenBalance);

The problem is that it does not account for residualRewardBalance of users, allowing the

admin to withdraw more tokens than should be available, since some are already reserved for
users.

Recommendation: Adjust withdrawRewardTokens () to consider the total
residualRewardBalance of all users. One approach is to use a global
totalResidualRewardBalance to track all users’ residual balances in _claimRewards ()

function withdrawRewardTokens(uint256 _amount) external nonReentrant ({
if (!hasRole(DEFAULT_ADMIN_ROLE, _msgSender())) revert NotAuthorized();
- if (_amount > rewardTokenBalance) revert NotEnoughBalance() ;
+ if (_amount + totalResidualRewardBalance > rewardTokenBalance) revert NotEnoughBalance ()

23/ 29

‘ Pashov Audit Group BOB Staking Security Review

IERC20(rewardToken) .safeTransfer(_msgSender (), _amount);
rewardTokenBalance -= _amount;

emit RewardTokensWithdrawnByAdmin(rewardTokenBalance) ;

Note: totalResidualRewardBalance should be increased in

_claimRewards () when rewards are assigned to residual balances and
decreased in claimResidualRewards() when users withdraw their residual
rewards.

[L-07] TIME UNIT is notexactly one year

TIME_UNIT is used to calculate rewards based on time.

/// @dev Time unit for the reward ratio calculation is 1 year
uint80 public constant TIME UNIT = 12 * 30 days;

The comment indicates this should represent 1 year, but it currently equals 360 days.

Recommendation: Set TIME UNIT to 365 days.

[L-08] Users cannot opt out of hybrid node delegation

The BobStaking::alterHybridNodeDelegatee function prevents users from opting out of
hybrid node delegation by enforcing whitelist validation on all new delegatee addresses,
including address(0)

function alterHybridNodeDelegatee(address newDelegatee) external nonReentrant {
Staker storage staker = stakers[_stakeMsgSender()];
if (staker.hybridNodeDelegatee == newDelegatee) revert DelegateeUnchanged();
if (staker.amountStaked == 0) revert ZeroTokenStake();

StakingCondition storage condition = stakingConditions[nextConditionId - 1];

if (!condition.whitelistedHybridNodeDelegatees.contains(newDelegatee)) revert
DelegateeNotWhitelisted();

_updateUnclaimedRewardsForStaker (_stakeMsgSender());

staker.hybridNodeDelegatee = newDelegatee;

emit HybridNodeDelegateeAltered(_stakeMsgSender (), newDelegatee);

Since address(0) will never be included in the whitelist, users who have set a hybrid node
delegatee cannot reset it to receive only base staking rewards. Once a user opts into hybrid
node delegation, they are permanently forced to delegate to one of the whitelisted nodes,
even if they prefer to stop participating in this reward mechanism.

Recommendations

24/ 29

Pashov Audit Group BOB Staking Security Review

In alterHybridNodeDelegatee , consider allowing address(0) as a valid parameter to
enable users to opt out.

[L-09] Unguarded claimRewards() canbe leveraged to deny
Instant withdrawal fees

The claimRewards () function allows anyone to claim rewards for the receiver due to its
unguarded nature:

/**

* @notice Claim accumulated rewards.

* @dev Adds rewards to staked balance.
*/

function claimRewards(address receiver) external nonReentrant {
_claimRewards(receiver, true);

However, this can lead to a situation where if the rewardTokenBalance goes down to O due
to normal protocol function, an attacker could simply call the claimRewards() for every
eligible receiver, which would lead to accumulation of residual rewards balance:

function _claimRewards(address receiver, bool shouldRevert) internal ({
_updateUnclaimedRewardsForStaker (receiver) ;
if (stakers[receiver].amountStaked == 0) revert NoRewardsError();

uint256 rewards = stakers[receiver].unclaimedRewards + _calculateRewards(receiver);
uint256 rewardsToPay = rewards;

if (rewards > rewardTokenBalance) {
rewardsToPay = rewardTokenBalance;

// add a residual reward balance for the user

// note: penalty wont apply to this amount if instantWithdraw is called
residualRewardBalance[receiver] += rewards - rewardTokenBalance;
stakers[receiver].unclaimedRewards = 0;

These residual reward balances are exempt from the instant withdrawal penalty and can be
directly withdrawn via claimResidualRewards() when the rewardTokenBalance is
sufficient. Hence, such an attack can allow for illicit claims where, even if the user does not
intend to claim rewards, they would be led to do so forcefully, denying the protocol of the
rightful instant withdrawal penalty fees.

Recommendations

It is recommended to guard the claimRewards() function to allow only the msg.sender to
claim their rewards.

25/ 29

Pashov Audit Group BOB Staking Security Review

[L-10] In _setStakingCondition() sumscan exceed
REWARD RATIO DENOMINATOR

_setStakingCondition() is used to set the reward ratio numerators and assign delegates.

function _setStakingCondition(
uint256 _baseNumerator,
uint256 _governanceNumerator,
uint256 _hybridNodeNumerator,
address[] memory whitelistedGovernanceDelegateesToAdd,
address[] memory _whitelistedGovernanceDelegateesToRemove,
address[] memory whitelistedHybridNodeDelegateesToAdd,
address[] memory _whitelistedHybridNodeDelegateesToRemove

) internal {

uint256 conditionId = nextConditionId;
nextConditionId += 1;

stakingConditions[conditionId].baseRewardRatioNumerator = _baseNumerator;

stakingConditions[conditionId].governanceDelegationRewardRatioNumerator =
_governanceNumerator;

stakingConditions[conditionId].hybridNodeDelegationRewardRatioNumerator
_hybridNodeNumerator;

stakingConditions[conditionId].startTimestamp = uint80(block.timestamp);

stakingConditions[conditionId].endTimestamp = 0;

for (uint256 i = 0; i < _whitelistedGovernanceDelegateesToAdd.length; i++) {

stakingConditions[conditionId] .whitelistedGovernanceDelegatees.add(_whitelistedGovernanceDelegateesToAdd[i]);

}

for (uint256 i = 0; i < _whitelistedGovernanceDelegateesToRemove.length; i++) {
stakingConditions[conditionId].whitelistedGovernanceDelegatees.remove (
_whitelistedGovernanceDelegateesToRemove[i]
)

for (uint256 i = 0; i < _whitelistedHybridNodeDelegateesToAdd.length; i++) ({

stakingConditions[conditionId] .whitelistedHybridNodeDelegatees.add(_whitelistedHybridNodeDelegateesToAdd[i]);

}
for (uint256 i = 0; i < _whitelistedHybridNodeDelegateesToRemove.length; i++) {
stakingConditions[conditionId] .whitelistedHybridNodeDelegatees.remove (
_whitelistedHybridNodeDelegateesToRemove[i]
)5

//store the time where this conditions needs to be applied
if (conditionId > 0) {
stakingConditions[conditionId - 1].endTimestamp = uint80(block.timestamp);

The issue is that _baseNumerator + governanceNumerator + _hybridNodeNumerator is
not checked against REWARD RATIO DENOMINATOR , allowing the total to exceed 100%.

This can result in rewards being calculated as more than 100% in _calculateRewards ()

26 /29

Pashov Audit Group BOB Staking Security Review

uint256 rewardsProduct = (endTime - startTime) * (staker.amountStaked)
* (
condition.baseRewardRatioNumerator +
governanceDelegationRewardRatioNumerator
+ hybridNodeDelegationRewardRatioNumerator

)5

uint256 rewardsSum = _rewards + ((rewardsProduct / TIME_UNIT) /
REWARD_RATIO_DENOMINATOR) ;

Recommendations

To fix the issue, setStakingCondition() should check that baseNumerator +
_governanceNumerator + hybridNodeNumerator <= REWARD RATIO DENOMINATOR and
revert if this condition is not met.

function _setStakingCondition(
uint256 _baseNumerator,
uint256 _governanceNumerator,
uint256 _hybridNodeNumerator,
address[] memory _whitelistedGovernanceDelegateesToAdd,
address[] memory _whitelistedGovernanceDelegateesToRemove,
address[] memory _whitelistedHybridNodeDelegateesToAdd,
address[] memory _whitelistedHybridNodeDelegateesToRemove

) internal {

uint256 conditionId = nextConditionId;
nextConditionld += 1;

iz require(_baseNumerator + _governanceNumerator + _hybridNodeNumerator =<
REWARD_RATIO DENOMINATOR, "REWARD_RATIO_DENOMINATOR superated");

stakingConditions[conditionId].baseRewardRatioNumerator = _baseNumerator;
stakingConditions[conditionId].governanceDelegationRewardRatioNumerator =
_governanceNumerator;

stakingConditions[conditionId].hybridNodeDelegationRewardRatioNumerator
_hybridNodeNumerator;

stakingConditions[conditionId].startTimestamp = uint80(block.timestamp);

stakingConditions[conditionId].endTimestamp = 0;

for (uint256 i = 0; i < _whitelistedGovernanceDelegateesToAdd.length; i++) {

stakingConditions[conditionId].whitelistedGovernanceDelegatees.add(_whitelistedGovernanceDelegat
eesToAdd[i]) ;
}
for (uint256 i = 0; i < whitelistedGovernanceDelegateesToRemove.length; i++) {
stakingConditions[conditionId].whitelistedGovernanceDelegatees.remove(
_whitelistedGovernanceDelegateesToRemove[i]

IE
for (uint256 i = 0; i < _whitelistedHybridNodeDelegateesToAdd.length; i++) {
stakingConditions[conditionId] .whitelistedHybridNodeDelegatees.add(_whitelistedHybridNodeDelegat

eesToAdd[i]);

}
for (uint256 i = 0; i < whitelistedHybridNodeDelegateesToRemove.length; i++) {

27/ 29

S ‘ Pashov Audit Group BOB Staking Security Review

stakingConditions[conditionId].whitelistedHybridNodeDelegatees.remove (
_whitelistedHybridNodeDelegateesToRemove[i]

//store the time where this conditions needs to be applied
if (conditionId > 0) {
stakingConditions[conditionId - 1].endTimestamp = uint80(block.timestamp);

[L-11] Residual recycling lets attackers farm wrapper bonus without
new capital

During the bonus window, BonusWrapper.stake(...) gives a bonus on amounts deposited
through the wrapper. Because BobStaking.claimRewards (receiver) is callable by anyone
and because residual rewards (created when rewardTokenBalance is low) are paidoutas
liquid tokens, an attacker can game the system:

Attack flow

1. While rewardTokenBalance has funds, attacker calls claimRewards (user) for many
users — their rewards auto-compoundinside BobStaking (notvia BonusWrapper),
consuming the reward pool and not qualifying for BonusWrapper’s bonus.

2. Immediately after, attacker calls claimRewards(attacker) when the pool is now low —
their rewards go to residualRewardBalance[attacker] (no compounding).

When admin later deposits rewards, attacker instantly claims residuals (now liquid ERC20).

4. Attacker re-deposits those same tokensvia BonusWrapper.stake duringthe bonus window,
earning the bonus without adding new capital (it's just already-earned rewards recycled
through the wrapper).

Effects

e **Unfair bonus capture **
Recommendations
Restrict claims to self:
function claimRewards(address receiver) external nonReentrant {

require(receiver == msg.sender, "Only self-claim");
_claimRewards(receiver, true);

28/ 29

‘ 5 ‘ Pashov Audit Group BOB Staking Security Review

[L-12] Anyone can trigger others’ claims causing front-running
reward loss

claimRewards (address receiver) lets anycaller pass any receiver :

function claimRewards (address receiver) external nonReentrant {
_claimRewards(receiver, true);

}

Inside claimRewards , the contract settles the receiver’s rewards. When
rewardTokenBalance is low, only a small portion is staked and the rest is pushed into
residualRewardBalance[receiver] (paid later as a plain transfer, not compounded).

A malicious actor can front-run a user’s own claim and call claimRewards to diminish
rewardTokenBalance This forces the victim’s rewards into residualRewardBalance (and
zeroes their unclaimedRewards) right before the victim tries to auto-compound, making the
victim miss compounding yield on the residual portion. No theft occurs, but it's a repeatable

grief that reduces the victim’s APR.

Recommendations Restrict self-claims only:** require receiver == msg.sender .

[L-13] Boost window mis-scaled dividingby TIME UNIT not 30 days

If the intended design is “pay a fixed total boosted amount spread over the 30-day window” as
indicated in the tests, the current implementation underpays. In _calculateRewards ,
boosted rewards are scaled by the annual unit TIME UNIT (360 days), not by the boost
window length:

// current

uint256 boostedRewardsProduct =

(effectiveElapsedSeconds) * staker.amountStaked * boostedRateNumerator;

_rewards += ((boostedRewardsProduct / TIME_UNIT) / REWARD_RATIO_DENOMINATOR) ;

With a 30-day window (boostedRateEndTime = now + 30 days)and TIME UNIT = 12 *
30 days , this divides by ~360 days instead of ~30 days, which the test file shows. If

boostedRateNumerator represents a fixed total boost over the 30-day period, users are paid
only about 1/12th (~8.3%) of the intended boost (= 91.7% underpayment).

Recommendations

Scale by the boost window length (not TIME UNIT).

29/ 29

	BOB Staking Security Review
	Contents

	1. About Pashov Audit Group
	2. Disclaimer
	3. Risk Classification
	4. About BOB Staking
	5. Executive Summary
	Scope

	6. Findings
	Findings count
	Summary of findings

	Critical findings
	[C-01] instantWithdraw() does not transfer _amountForContract, locking tokens
	Severity
	Description
	Recommendations
	[C-02] Stakes not forwarded post-delegation, positions unwithdrawable
	Severity
	Description
	Recommendations

	High findings
	[H-01] Bonuses obtainable without proper locking due to flawed lock period
	Severity
	Description
	Recommendations
	[H-02] Delegating to address(0) empties contract via alterGovernanceDelegatee()
	Severity
	Description
	Recommendations

	Medium findings
	[M-01] Instant withdraw lets users self-fund residuals with their own penalty
	Severity
	Description
	Recommendations
	[M-02] Condition setter functions are broken
	Severity
	Description
	Recommendations
	[M-03] DoS of staking due to unguarded receiver lock period
	Severity
	Description
	Proof Of Concept

	Recommendations

	Low findings
	[L-01] Residual claim reverts on shortage
	[L-02] Expired lock accepts new stake
	[L-03] Missing validation allows bonusEndTime to be set to past timestamps
	[L-04] Missing events on key setters
	[L-05] Multistep division leads to loss of precision
	[L-06] withdrawRewardTokens() allows excess withdrawal ignoring residualRewardBalance
	[L-07] TIME_UNIT is not exactly one year
	[L-08] Users cannot opt out of hybrid node delegation
	[L-09] Unguarded claimRewards() can be leveraged to deny Instant withdrawal fees
	[L-10] In _setStakingCondition() sums can exceed REWARD_RATIO_DENOMINATOR
	[L-11] Residual recycling lets attackers farm wrapper bonus without new capital
	[L-12] Anyone can trigger others' claims causing front-running reward loss
	[L-13] Boost window mis-scaled dividing by TIME_UNIT not 30 days

