
 BOB FusionLock
 Security Assessment (Summary Report)

 April 3, 2024

 Prepared for:

 BOB Collective

 Prepared by: Justin Jacob

 About Trail of Bits

 Founded in 2012 and headquartered in New York, Trail of Bits provides technical security
 assessment and advisory services to some of the world’s most targeted organizations. We
 combine high- end security research with a real -world attacker mentality to reduce risk and
 fortify code. With 100+ employees around the globe, we’ve helped secure critical software
 elements that support billions of end users, including Kubernetes and the Linux kernel.

 We maintain an exhaustive list of publications at https://github.com/trailofbits/publications ,
 with links to papers, presentations, public audit reports, and podcast appearances.

 In recent years, Trail of Bits consultants have showcased cutting-edge research through
 presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,
 the O’Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.

 We specialize in software testing and code review projects, supporting client organizations
 in the technology, defense, and finance industries, as well as government entities. Notable
 clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.

 Trail of Bits also operates a center of excellence with regard to blockchain security. Notable
 projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,
 MakerDAO, Matic, Uniswap, Web3, and Zcash.

 To keep up to date with our latest news and announcements, please follow @trailofbits on
 Twitter and explore our public repositorie s at https://github.com/trailofbits . To engage us
 directly, visit our “Contact” pag e at https://www.trailofbits.com/contact , or email us at
 info@trailofbits.com .

 Trail of Bits, Inc.
 228 Park Ave S #80688
 New York, NY 10003
 https://www.trailofbits.com
 info@trailofbits.com

 Trail of Bits 1 BOB FusionLock Security Assessment
 PUBLIC

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com

 Notices and Remarks

 Copyright and Distribution
 © 2024 by Trail of Bits, Inc.

 All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this
 report in the United Kingdom.

 This report is considered by Trail of Bits to be public information; it is licensed to the BOB
 Collective under the terms of the project statement of work and has been made public at
 the BOB Collective’s request. Material within this report may not be reproduced or
 distributed in part or in whole without the express written permission of Trail of Bits.

 The sole canonical source for Trail of Bits publications, if published, is the Trail of Bits
 Publications page . Reports accessed through any source other than that page may have
 been modified and should not be considered authentic.

 The sole canonical source for Trail of Bits publications is the Trail of Bits Publications page .
 Reports accessed through any source other than that page may have been modified and
 should not be considered authentic.

 Test Coverage Disclaimer
 All activities undertaken by Trail of Bits in association with this project were performed in
 accordance with a statement of work and agreed upon project plan.

 Security assessment projects are time-boxed and often reliant on information that may be
 provided by a client, its affiliates, or its partners. As a result, the findings documented in
 this report should not be considered a comprehensive list of security issues, flaws, or
 defects in the target system or codebase.

 Trail of Bits uses automated testing techniques to rapidly test the controls and security
 properties of software. These techniques augment our manual security review work, but
 each has its limitations: for example, a tool may not generate a random edge case that
 violates a property or may not fully complete its analysis during the allotted time. Their use
 is also limited by the time and resource constraints of a project.

 Trail of Bits 2 BOB FusionLock Security Assessment
 PUBLIC

https://github.com/trailofbits/publications
https://github.com/trailofbits/publications
https://github.com/trailofbits/publications

 Table of Contents

 About Trail of Bits 1
 Notices and Remarks 2
 Table of Contents 3
 Project Summary 4
 Project Targets 5
 Executive Summary 6
 Summary of Findings 7
 A. Incident Response Recommendations 8
 B. Token Integration Checklist 10

 Trail of Bits 3 BOB FusionLock Security Assessment
 PUBLIC

 Project Summary

 Contact Information
 The following project manager was associated with this project:

 Jeff Braswell , Project Manager
 jeff.braswell@trailofbits.com

 The following engineering director was associated with this project:

 Josselin Feist , Engineering Director, Blockchain
 josselin.feist@trailofbits.com

 The following consultant was associated with this project:

 Justin Jacob , Consultant
 justin.jacob@trailofbits.com

 Project Timeline
 The significant events and milestones of the project are listed below.

 Date Event

 March 21, 2024 Pre-project kickoff call

 March 25, 2024 Delivery of report draft

 March 25, 2024 Report readout meeting

 April 3, 2024 Delivery of summary report

 Trail of Bits 4 BOB FusionLock Security Assessment
 PUBLIC

 Project Targets

 The engagement involved a review and testing of the following target.

 FusionLock
 Repository https://github.com/bob-collective/fusion-lock

 Version f65b5c58d495a80cafceab6bfa046b0d10fd90e1

 Type Solidity

 Platform EVM

 Trail of Bits 5 BOB FusionLock Security Assessment
 PUBLIC

 Executive Summary

 Engagement Overview
 The BOB Collective engaged Trail of Bits to review the security of its FusionLock contract.
 The contract is designed to lock users’ ETH and ERC-20 deposits and allow them to bridge
 their funds to the BOB Collective’s L2 blockchain. The contract also includes functionality
 for pausing withdrawals and deposits and withdrawing tokens on the L1 blockchain.

 One consultant conducted the review from March 21 to March 22, 2024, for a total of two
 engineer-days of effort. With full access to source code and documentation, we performed
 static and dynamic testing of the target, using automated and manual processes.

 Observations and Impact
 The code is fairly straightforward and simple to understand. We found three minor issues
 regarding the lack of data validation for ownership transfers, pausing the contract’s
 functions, and contract existence checks. The code relies on correctly interfacing with the
 Optimism bridge. While we did verify some basic functionality and integration with the
 bridge, we did not go into detail about attack vectors and scenarios regarding bridging.

 Recommendations
 Based on the findings in this report, we recommend that the BOB Collective take the
 following steps:

 ● Remediate the findings disclosed in this report. These findings should be
 addressed as part of a direct remediation or as part of any refactor that may occur
 when addressing other recommendations.

 ● Expand the testing suite. The current testing suite is a good baseline, but further
 testing, such as fuzz testing tailored to protocol-specific invariants and complex
 scenarios mimicking real usage, will help uncover edge cases. Guidance on
 introducing stateful fuzzing can be found in Trail of Bits’ Learn how to fuzz like a pro
 series on YouTube .

 Trail of Bits 6 BOB FusionLock Security Assessment
 PUBLIC

https://www.youtube.com/watch?v=QofNQxW_K08&list=PLciHOL_J7Iwqdja9UH4ZzE8dP1IxtsBXI

 Summary of Findings

 The table below summarizes the findings of the review, including type and severity details.

 ID Title Type Severity

 1 withdrawDepositsToL1 is lacking a pausable modifier Data
 Validation

 Informational

 2 Lack of two-step process for ownership transference Data
 Validation

 Low

 3 Lack of zero-address checks in setBridgeProxyAddress Data
 Validation

 Informational

 Trail of Bits 7 BOB FusionLock Security Assessment
 PUBLIC

 A. Incident Response Recommendations

 This section provides recommendations on formulating an incident response plan.

 ● Identify the parties (either specific people or roles) responsible for
 implementing the mitigations when an issue occurs (e.g., deploying smart
 contracts, pausing contracts, upgrading the front end, etc.).

 ● Document internal processes for addressing situations in which a deployed
 remedy does not work or introduces a new bug.

 ○ Consider documenting a plan of action for handling failed remediations.

 ● Clearly describe the intended contract deployment process.

 ● Outline the circumstances under which the BOB Collective will compensate
 users affected by an issue (if any).

 ○ Issues that warrant compensation could include an individual or aggregate
 loss or a loss resulting from user error, a contract flaw, or a third-party
 contract flaw.

 ● Document how the team plans to stay up to date on new issues that could
 affect the system; awareness of such issues will inform future development
 work and help the team secure the deployment toolchain and the external
 on-chain and off-chain services that the system relies on.

 ○ Identify sources of vulnerability news for each language and component
 used in the system, and subscribe to updates from each source. Consider
 creating a private Discord channel in which a bot will post the latest
 vulnerability news; this will provide the team with a way to track all updates
 in one place. Lastly, consider assigning certain team members to track news
 about vulnerabilities in specific system components.

 ● Determine when the team will seek assistance from external parties (e.g.,
 auditors, affected users, other protocol developers) and how it will onboard
 them.

 ○ Effective remediation of certain issues may require collaboration with
 external parties.

 ● Define contract behavior that would be considered abnormal by off-chain
 monitoring solutions.

 Trail of Bits 8 BOB FusionLock Security Assessment
 PUBLIC

 It is best practice to perform periodic dry runs of scenarios outlined in the incident
 response plan to find omissions and opportunities for improvement and to develop
 “muscle memory.” Additionally, document the frequency with which the team should
 perform dry runs of various scenarios, and perform dry runs of more likely scenarios more
 regularly. Create a template to be filled out with descriptions of any necessary
 improvements after each dry run.

 Trail of Bits 9 BOB FusionLock Security Assessment
 PUBLIC

 B. Token Integration Checklist

 The following checklist provides recommendations for interactions with arbitrary tokens.
 Every unchecked item should be justified and its associated risks understood. For an
 up-to-date version of the checklist, see crytic/building-secure-contracts .

 For convenience, all Slither utilities can be run directly on a token address, such as the
 following:

 slither-check-erc 0xdac17f958d2ee523a2206206994597c13d831ec7 TetherToken --erc erc20
 slither-check-erc 0x06012c8cf97BEaD5deAe237070F9587f8E7A266d KittyCore --erc erc721

 To follow this checklist, use the following output from Slither for the token:

 slither-check-erc [target] [contractName] [optional: --erc ERC_NUMBER]
 slither [target] --print human-summary
 slither [target] --print contract-summary
 slither-prop . --contract ContractName # requires configuration, and use of Echidna
 and Manticore

 General Considerations
 ❏ The contract has a security review. Avoid interacting with contracts that lack a

 security review. Check the length of the assessment (i.e., the level of effort), the
 reputation of the security firm, and the number and severity of the findings.

 ❏ You have contacted the developers. You may need to alert their team to an
 incident. Look for appropriate contacts on blockchain-security-contacts .

 ❏ They have a security mailing list for critical announcements. Their team should
 advise users when critical issues are found or when upgrades occur.

 Contract Composition
 ❏ The contract avoids unnecessary complexity. The token should be a simple

 contract; a token with complex code requires a higher standard of review. Use
 Slither’s human-summary printer to identify complex code.

 ❏ The contract uses SafeMath or Solidity 0.8.0+. Contracts that do not use
 SafeMath require a higher standard of review. Inspect the contract by hand for
 SafeMath /Solidity 0.8.0+ usage.

 ❏ The contract has only a few non-token-related functions. Non-token-related
 functions increase the likelihood of an issue in the contract. Use Slither’s
 contract-summary printer to broadly review the code used in the contract.

 Trail of Bits 10 BOB FusionLock Security Assessment
 PUBLIC

https://github.com/crytic/building-secure-contracts/blob/master/development-guidelines/token_integration.md
https://github.com/crytic/slither#tools
https://github.com/crytic/blockchain-security-contacts
https://github.com/crytic/slither/wiki/Printer-documentation#human-summary
https://github.com/crytic/slither/wiki/Printer-documentation#contract-summary

 ❏ The token has only one address. Tokens with multiple entry points for balance
 updates can break internal bookkeeping based on the address (e.g.,
 balances[token_address][msg.sender] may not reflect the actual balance).

 Owner Privileges
 ❏ The token is not upgradeable. Upgradeable contracts may change their rules over

 time. Use Slither’s human-summary printer to determine whether the contract is
 upgradeable.

 ❏ The owner has limited minting capabilities. Malicious or compromised owners
 can misuse minting capabilities. Use Slither’s human-summary printer to review
 minting capabilities, and consider manually reviewing the code.

 ❏ The token is not pausable. Malicious or compromised owners can trap contracts
 relying on pausable tokens. Identify pausable code by hand.

 ❏ The owner cannot denylist the contract. Malicious or compromised owners can
 trap contracts relying on tokens with a denylist. Identify denylisting features by
 hand.

 ❏ The team behind the token is known and can be held responsible for misuse.
 Contracts with anonymous development teams or teams that reside in legal shelters
 require a higher standard of review.

 ERC-20 Tokens
 ERC-20 Conformity Checks
 Slither includes a utility, slither-check-erc , that reviews the conformance of a token to
 many related ERC standards. Use slither-check-erc to review the following:

 ❏ Transfer and transferFrom return a Boolean. Several tokens do not return a
 Boolean on these functions. As a result, their calls in the contract might fail.

 ❏ The name , decimals , and symbol functions are present if used. These functions
 are optional in the ERC-20 standard and may not be present.

 ❏ Decimals returns a uint8 . Several tokens incorrectly return a uint256 . In such
 cases, ensure that the value returned is less than 255.

 ❏ The token mitigates the known ERC-20 race condition . The ERC-20 standard has
 a known ERC-20 race condition that must be mitigated to prevent attackers from
 stealing tokens.

 Slither includes a utility, slither-prop , that generates unit tests and security properties
 that can discover many common ERC flaws. Use slither-prop to review the following:

 Trail of Bits 11 BOB FusionLock Security Assessment
 PUBLIC

https://github.com/crytic/slither/wiki/Printer-documentation#human-summary
https://github.com/crytic/slither/wiki/Printer-documentation#human-summary
https://github.com/crytic/slither/wiki/ERC-Conformance
https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
https://github.com/crytic/slither/wiki/Property-generation

 ❏ The contract passes all unit tests and security properties from slither-prop .
 Run the generated unit tests and then check the properties with Echidna and
 Manticore .

 Risks of ERC-20 Extensions
 The behavior of certain contracts may differ from the original ERC specification. Conduct a
 manual review of the following conditions:

 ❏ The token is not an ERC-777 token and has no external function call in
 transfer or transferFrom . External calls in the transfer functions can lead to
 reentrancies.

 ❏ Transfer and transferFrom should not take a fee. Deflationary tokens can lead
 to unexpected behavior.

 ❏ Potential interest earned from the token is accounted for. Some tokens
 distribute interest to token holders. This interest may be trapped in the contract if
 not accounted for.

 Token Scarcity
 Reviews of token scarcity issues must be executed manually. Check for the following
 conditions:

 ❏ The supply is owned by more than a few users. If a few users own most of the
 tokens, they can influence operations based on the tokens’ repartition.

 ❏ The total supply is sufficient. Tokens with a low total supply can be easily
 manipulated.

 ❏ The tokens are in more than a few exchanges. If all the tokens are in one
 exchange, a compromise of the exchange could compromise the contract relying on
 the token.

 ❏ Users understand the risks associated with a large amount of funds or flash
 loans. Contracts relying on the token balance must account for attackers with a
 large amount of funds or attacks executed through flash loans.

 ❏ The token does not allow flash minting. Flash minting can lead to substantial
 swings in the balance and the total supply, which necessitate strict and
 comprehensive overflow checks in the operation of the token.

 Trail of Bits 12 BOB FusionLock Security Assessment
 PUBLIC

https://github.com/crytic/echidna
https://manticore.readthedocs.io/en/latest/verifier.html

 ERC-721 Tokens
 ERC-721 Conformity Checks
 The behavior of certain contracts may differ from the original ERC specification. Conduct a
 manual review of the following conditions:

 ❏ Transfers of tokens to the 0x0 address revert. Several tokens allow transfers to
 0x0 and consider tokens transferred to that address to have been burned; however,
 the ERC-721 standard requires that such transfers revert.

 ❏ safeTransferFrom functions are implemented with the correct signature.
 Several token contracts do not implement these functions. A transfer of NFTs to one
 of these contracts can result in a loss of assets.

 ❏ The name , decimals , and symbol functions are present if used. These functions
 are optional in the ERC-721 standard and may not be present.

 ❏ If it is used, decimals returns a uint8(0) . Other values are invalid.

 ❏ The name and symbol functions can return an empty string. This behavior is
 allowed by the standard.

 ❏ The ownerOf function reverts if the tokenID is invalid or is set to a token that
 has already been burned. The function cannot return 0x0 . This behavior is
 required by the standard, but it is not always properly implemented.

 ❏ A transfer of an NFT clears its approvals. This is required by the standard.

 ❏ The tokenID of an NFT cannot be changed during its lifetime. This is required by
 the standard.

 Common Risks of the ERC-721 Standard
 To mitigate the risks associated with ERC-721 contracts, conduct a manual review of the
 following conditions:

 ❏ The onERC721Received callback is accounted for. External calls in the transfer
 functions can lead to reentrancies, especially when the callback is not explicit (e.g.,
 in safeMint calls).

 ❏ When an NFT is minted, it is safely transferred to a smart contract. If there is a
 minting function, it should behave like safeTransferFrom and properly handle the
 minting of new tokens to a smart contract. This will prevent a loss of assets.

 ❏ The burning of a token clears its approvals. If there is a burning function, it
 should clear the token’s previous approvals.

 Trail of Bits 13 BOB FusionLock Security Assessment
 PUBLIC

https://www.paradigm.xyz/2021/08/the-dangers-of-surprising-code

