
BOB Security Review
Pashov Audit Group

Conducted by: dirk_y, ast3ros, 0xbepresent
August 9th 2024 - August 12th 2024

Contents
1. About Pashov Audit Group
2. Disclaimer
3. Introduction
4. About BOB
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings

8.1. Low Findings
[L-01] Unnecessary onlyOwner restriction
[L-02] Deadline is set to block.timestamp
[L-03] Velodrome pool pauses can potentially lead to
disrupting BTC bridging
[L-04] The gateway owner can set a malicious swapper that
could cause losses
[L-05] Lack of fee range length limit
[L-06] High convertedBtcAmountToBeSwappedToEth value
setting allowed
[L-07] Potential blockage of relayer operations due to token
pause mechanism

1

2

2

2

2

3

3
3
3

4

5

7

7

7

7

8

8

9

11

14

1. About Pashov Audit Group
Pashov Audit Group consists of multiple teams of some of the best smart contract
security researchers in the space. Having a combined reported security vulnerabilities
count of over 1000, the group strives to create the absolute very best audit journey
possible - although 100% security can never be guaranteed, we do guarantee the best
efforts of our experienced researchers for your blockchain protocol. Check our previous
work here or reach out on Twitter @pashovkrum.

2. Disclaimer
A smart contract security review can never verify the complete absence of
vulnerabilities. This is a time, resource and expertise bound effort where we try to find
as many vulnerabilities as possible. We can not guarantee 100% security after the
review or even if the review will find any problems with your smart contracts.
Subsequent security reviews, bug bounty programs and on-chain monitoring are
strongly recommended.

3. Introduction
A time-boxed security review of the bob-collective/bob-gateway repository was done
by Pashov Audit Group, with a focus on the security aspects of the application's smart
contracts implementation.

4. About BOB
BOB is a hybrid Layer-2 powered by Bitcoin and Ethereum. The design is such that
Bitcoin users can easily onboard to the BOB L2 without previously holding any
Ethereum assets. The user coordinates with the trusted relayer to reserve some of the
available liquidity, sends BTC on the Bitcoin mainnet and then the relayer can provide a
merkle proof to execute a swap on BOB for an ERC20 token.

2

https://github.com/pashov/audits
https://twitter.com/pashovkrum

5. Risk Classification

Severity Impact: High Impact: Medium Impact: Low

Likelihood: High Critical High Medium

Likelihood: Medium High Medium Low

Likelihood: Low Medium Low Low

5.1. Impact

High - leads to a significant material loss of assets in the protocol or significantly
harms a group of users.
Medium - only a small amount of funds can be lost (such as leakage of value) or a
core functionality of the protocol is affected.
Low - can lead to any kind of unexpected behavior with some of the protocol's
functionalities that's not so critical.

5.2. Likelihood

High - attack path is possible with reasonable assumptions that mimic on-chain
conditions, and the cost of the attack is relatively low compared to the amount of
funds that can be stolen or lost.
Medium - only a conditionally incentivized attack vector, but still relatively likely.
Low - has too many or too unlikely assumptions or requires a significant stake by the
attacker with little or no incentive.

5.3. Action required for severity levels

Critical - Must fix as soon as possible (if already deployed)
High - Must fix (before deployment if not already deployed)
Medium - Should fix
Low - Could fix

3

6. Security Assessment Summary
review commit hash - 1511179bfc908b73020e8c3b668957c7857a8c61

fixes review commit hash - 36b5dec7446538c9e54e94291a755ace4f0cf920

Scope

The following smart contracts were in scope of the audit:

OnrampV1

OnrampFactoryV1

Gateway

GatewayRegistry

ERC20Mintable

Constants

CommonStructs

IERC20Ext

IGateway

VelodromeSwapper

TestnetSwapper

ISwapper

IRouter

IWETH

4

https://github.com/bob-collective/bob-gateway/tree/1511179bfc908b73020e8c3b668957c7857a8c61
https://github.com/bob-collective/bob-gateway/tree/36b5dec7446538c9e54e94291a755ace4f0cf920

7. Executive Summary
Over the course of the security review, dirk_y, ast3ros, 0xbepresent engaged with BOB
to review BOB. In this period of time a total of 7 issues were uncovered.

Protocol Summary
Protocol Name BOB

Repository https://github.com/bob-collective/bob-gateway

Date August 9th 2024 - August 12th 2024

Protocol Type Hybrid Layer 2

Findings Count
Severity Amount

Low 7

Total Findings 7

5

Summary of Findings
ID Title Severity Status

[L-01] Unnecessary onlyOwner restriction Low Resolved

[L-02] Deadline is set to block.timestamp Low Acknowledged

[L-03] Velodrome pool pauses can potentially
lead to disrupting BTC bridging Low Resolved

[L-04] The gateway owner can set a malicious
swapper that could cause losses Low Resolved

[L-05] Lack of fee range length limit Low Acknowledged

[L-06]
High
convertedBtcAmountToBeSwappedToEth
value setting allowed

Low Acknowledged

[L-07] Potential blockage of relayer operations
due to token pause mechanism Low Acknowledged

6

8. Findings

8.1. Low Findings

[L-01] Unnecessary onlyOwner restriction
The depositERC20 function in the Gateway contract is restricted to onlyOwner ,
allowing only the contract owner to deposit tokens into the contract. However, this
restriction is largely ineffective as anyone can directly transfer tokens to the
contract address, bypassing this function entirely.

/**
 * @dev Deposit tokens in the contract.
 * Can only be called by the current owner
 */
 function depositERC20
 //(uint256 amount) external onlyOwner { // @audit restrict to owner but anyone can tran
 emit DepositERC20(amount);
 IERC20(token).safeTransferFrom(_msgSender(), address(this), amount);
 }

When getting the liquidity of the Gateway, the relayer calls availableLiquidity()
directly to query the token balance of the contract.

[L-02] Deadline is set to block.timestamp
In the swapExactTokensForNative function, when calling the router to swap tokens
for ETH, the deadline parameter is set to block.timestamp. This means the deadline
is set to the current block timestamp when the transaction is included by the
validator, not when it's submitted. Without a deadline parameter, the transaction
may sit in the mempool and be executed at a much later time potentially resulting
in a worse price for the user. However, due to the amountIn being a small amount
of ETH, the impact is low.

Consider adding a deadline parameter to the swapExactTokensForNative
function, allowing the relayer to set an appropriate future timestamp.

7

function swapExactTokensForNative(
 IERC20 _token,
 uint256 _amountIn,
 uint256 _amountOutMin,
 address payable _to,
 bytes memory
) external override returns (uint256 outAmount) {
 ...

 outAmount = router.swapExactTokensForETH
 //(_amountIn, _amountOutMin, routes, _to, block.timestamp)[1]; // @audit deadline i
 }

[L-03] Velodrome pool pauses can potentially
lead to disrupting BTC bridging

The Velodrome pool, which is used for swapping tokens in the gateway process,
can be paused by the pool factory admin. If the pool is paused, the swap token for
ETH function will revert, preventing BTC from being bridged to the Bob L2 chain
despite multiple retry attempts.

function swap(
 uint256amount0Out,
 uint256amount1Out,
 addressto,
 bytescalldatadata
) external nonReentrant {
 if (IPoolFactory(factory).isPaused()) revert IsPaused();

It's recommended to check if the pool is paused, then skip the swap eth for the user.

[L-04] The gateway owner can set a malicious
swapper that could cause losses

The setSwapper function allows the Gateway owner to set any contract as the
swapper, If the owner sets a malicious contract as the swapper, the malicious
contract can be programmed to steal funds during the swap process:

8

...
 function _setSwapper(ISwapper _swapper) internal {
 emit UpdateSwapper(address(_swapper));
 swapper = _swapper;
 }
...
...
 function releaseFundsAndInvest(
 bytes32 _txHash,
 uint256 _outputValueSat,
 address payable _recipient,
 bool _sendEthToUser,
 uint256 _ethTransferGasLimit,

 bytes memory /* any extra data that is needed for this specific gateway co
) external override onlyRegistry {
 ...
 ...
 receivedEthFromSwap =
 swapper.swapExactTokensForNative
 (token, cappedAmountToSwap, 0, payable(this), new bytes(0));
 ...
 ...
 }
...
...

It is recommended that the swap contract only be set at the beginning during the
creation of the Gateway contract, as this process is audited by the protocol itself,
which also pays for it (permissioned). Otherwise, a malicious owner could change
the swapper contract, and there may be users who agree to the terms using a
malicious swapper.

[L-05] Lack of fee range length limit
In the Gateway.sol contract, the setFeeRanges function lacks a limit on the
number of fee ranges that can be set. Since the protocol pays for the deployments
of the Gateway.sol

LP asks relayer to deploy gateway contract (permissioned because we
pay for fees)

, an unrestricted number of fee ranges can lead to excessive gas consumption,
resulting in higher operational costs for the protocol.

9

https://github.com/bob-collective/bob-gateway?tab=readme-ov-file#lp-flow

constructor
 (GatewayConstructorArgs memory gatewayConstructorArgs) Ownable2Step() {
 require(gatewayConstructorArgs.gatewayOwner != address
 (0), "Owner is the zero address");
 _transferOwnership(gatewayConstructorArgs.gatewayOwner);

 registry = gatewayConstructorArgs.gatewayRegistry;
 token = gatewayConstructorArgs.token;
 require(token.decimals() >= 8, "Invalid token");
 multiplier = 10 ** (token.decimals() - 8);

 _setOutputScript(gatewayConstructorArgs.outputScript);
 _setDustThreshold(_DEFAULT_DUST_THRESHOLD);
 _setConvertedBtcToBeSwappedToEth
 (gatewayConstructorArgs.btcToBeSwappedToEth);
>>> _setFeeRanges(gatewayConstructorArgs.feeRanges);
 _setSwapper(gatewayConstructorArgs.swapper);
 }
...
...
 function _setFeeRanges(FeeRange[] memory _feeRanges) internal {
 uint256 feeRangesLength = _feeRanges.length;
 require(
 _feeRanges[0].amountLowerRange==0,
 "Firstrangelowerboundaryhastobe0"
);

>>> for (uint256 i; i < feeRangesLength - 1; ++i) {
 require(

 _feeRanges[i].amountLowerRange < _feeRanges[i + 1].amountL
 "Amount lower ranges need to be sorted ascending"
);
 require(

 _feeRanges[i].scaledFeePercent > _feeRanges[i + 1].scaledF
 "Scaled fee percent need to be sorted descending"
);
 require(
 _feeRanges[i].scaledFeePercent<=SCALED_MAX_FEE,
 "Feemustbe<=maximumfeeforallranges"
);
 }
 require(
 _feeRanges[feeRangesLength - 1].scaledFeePercent <= SCALED_MAX_FEE,
 "Fee must be <= maximum fee for all ranges"
);

 emit UpdateFeeRanges(_feeRanges);

 // Solc compiler: Copying of type struct FeeRange memory[] memory to
 // storage not yet supported.
 delete feeRanges;
 for (uint256 i; i < feeRangesLength; ++i) {
 feeRanges.push(_feeRanges[i]);
 }
 }
...
...

Furthermore, each time the relayer calls the releaseFundsAndInvest function, the
fees are calculated. This gas expenditure is paid by the relayer, thereby increasing
the operational costs for the protocol.

10

function releaseFundsAndInvest(
 bytes32 _txHash,
 uint256 _outputValueSat,
 address payable _recipient,
 bool _sendEthToUser,
 uint256 _ethTransferGasLimit,

 bytes memory /* any extra data that is needed for this specific gateway co
) external override onlyRegistry {
 ...
 ...
 // Passing feeRanges to calculateFee even though this incurs a small gas
 // penalty compared to directly using it inside the method.
 // Passing it to calculateFee will make the method pure and make testing
 // easier.
>>> uint256 feeSat = calculateFee(_outputValueSat, feeRanges);
 ...
 ...
 }
...
...
 function calculateFee(
 uint256_amount,
 FeeRange[]memory_feeRanges
) public view virtual returns (uint256 fee
 uint256 feeRangesLength = _feeRanges.length;

 uint256 feeRangeIndex = 1;
>>> for (; feeRangeIndex < feeRangesLength; ++feeRangeIndex) {
 if (_feeRanges[feeRangeIndex].amountLowerRange > _amount) {
 break;
 }
 }
 --feeRangeIndex;

 fee =
 (_amount * _feeRanges[feeRangeIndex].scaledFeePercent) / Constants.FEE_SCALER;
 }

Recommendations
It is recommended to impose a reasonable limit on the number of fee ranges that
can be set.

[L-06] High
convertedBtcAmountToBeSwappedToEth value
setting allowed

In the Gateway contract, the owner has the ability to set the amount of converted
BTC that will be swapped to wETH via the
Gateway::setConvertedBtcToBeSwappedToEth function. The swapped wETH is then
sent to the recipient. The amountOut parameter in the swapping function is set to 0,
which means the swap will proceed regardless of the amount of ETH received, as
mentioned in the code comments, for the swap, amountOut is set to zero because it

11

is not economically valuable as the converted amount is small. This setup is
intended to prevent sandwich attacks, but it does not work under certain conditions.

12

function releaseFundsAndInvest(
 bytes32 _txHash,
 uint256 _outputValueSat,
 address payable _recipient,
 bool _sendEthToUser,
 uint256 _ethTransferGasLimit,

 bytes memory /* any extra data that is needed for this specific gateway co
) external override onlyRegistry {
 // slither-disable-next-line timestamp
 require(
 updateStart==0||block.timestamp<=updateStart+UPDATE_DELAY,
 "Notallowedtoexecute"
);

 require(_outputValueSat >= dustThreshold, "Amount too small");

 require(!spent[_txHash], "Transaction already spent");
 spent[_txHash] = true;

 // Passing feeRanges to calculateFee even though this incurs a small gas
 // penalty compared to directly using it inside the method.
 // Passing it to calculateFee will make the method pure and make testing
 // easier.
 uint256 feeSat = calculateFee(_outputValueSat, feeRanges);

 // scale the Btc so the decimal count of Btc will correspond to
 // converted Btc
 uint256 scaledAmount = (_outputValueSat - feeSat) * multiplier;

 // cap at the amount of Btc sent by the user, meaning if the user sends
 // less Btc
 // then the conversion amount everything is swapped to Eth
>>> uint256 cappedAmountToSwap = Math.min
 (convertedBtcAmountToBeSwappedToEth, scaledAmount);

 uint256 receivedEthFromSwap = 0;
 if (_sendEthToUser) {
 // now subtract the amount to be swapped
 scaledAmount = scaledAmount - cappedAmountToSwap;

 IERC20(token).safeIncreaseAllowance(address
 (swapper), cappedAmountToSwap);
 // 1.
 // For extra safety against contract level reentrancy, the ETH is
 // transferred back to the

 // After transferred back to the contract, the gas will be limited
 // to 2300 by the transfer function before forwarding it to the
 // user supplied address. Doing the transfer directly from the AMM
 // might not limit the gas which could cause reentrancy attack.

>>> // 2.
>>> // The amountOut for the swap is set to 0, as the small amount of
// converted Btc will make sandwich attacks
>>> // not worthy economically to carry out.
>>> // Denial of service attacks are still possible where an attacker
// would make sandwich attacks to decrase the amount of
>>> // ETH the user receives to a near 0 amount. It would be costly
// though for the attacker.
>>> receivedEthFromSwap =
>>> swapper.swapExactTokensForNative
 (token, cappedAmountToSwap, 0, payable(this), new bytes(0));

 (
 boolsent,

) = _recipient.call{value: receivedEthFromSwap, gas: _ethTransferGasLimit}(""
 require(sent, "Could not transfer ETH");
 }
 emit ExecuteSwap(

13

 _recipient,
 _txHash,
 _outputValueSat,
 feeSat,
 scaledAmount,
 receivedEthFromSwap
);

 // transfer converted Btc token
 IERC20(token).safeTransfer(_recipient, scaledAmount);
 }

A malicious owner can set the convertedBtcAmountToBeSwappedToEth to a high
value. Given that the amountOut is set to zero, the swap will still proceed, but the
recipient may receive an insignificant amount of ETH or even zero tokens.
Consider the next scenario:

1. The Gateway's owner sets convertedBtcAmountToBeSwappedToEth=4 , which
means that 4 ERC20 btc tokens will be converted to weth .

2. The user agrees to the terms and transfers 10 btc to the Gateway.owner
(scriptPubKeyHash).

3. The relayer calls the Gateway::releaseFundsAndInvest function, and 4 ERC20
btc tokens (convertedBtcAmountToBeSwappedToEth) are allocated to be
swapped to weth . However, because amountOut is set to zero in the swap
function, the Gateway owner exploits this to perform a sandwich attack, resulting
in zero weth being sent to the recipient.

4. The recipient only receives 6 ERC20 btc tokens out of the 10 BTC they
transferred. 4 ERC20 btc tokens were stolen by the owner through the swap
sandwich attack.

Implement a cap on the maximum value that
convertedBtcAmountToBeSwappedToEth can be set to. This will prevent the owner
from setting an excessively high value that could be exploited.

[L-07] Potential blockage of relayer operations
due to token pause mechanism

The Gateway contract allows the owner to call startUpdate() to initiate a 6-hour
window during which the relayer can execute releaseFundsAndInvest .
However, if the token contract implements a pause mechanism that prevents token
transfers, the relayer will be unable to execute this function within the allowed
timeframe. Once the 6-hour window elapses, the owner can proceed with updating
the state, potentially without the relayer ever having the opportunity to perform the
necessary token transfer. Consider the next scenario:

14

1. The user accepts the terms and transfers btc to the gateway owner's account
(scriptPubKeyHash).

2. The gateway owner initiates Gateway::startUpdate , and the relayer has only 6
hours to execute the order generated in step 1.

3. For some reason, the ERC20 Gateway.token activates the pause mechanism, and
the transfers are reverted.

4. The relayer invokes GatewayRegistry::proveBtcTransfer , which in turn calls
Gateway::releaseFundsAndInvest ; however, the token transfer is not possible
because the token is paused (the transaction is reverted).

function releaseFundsAndInvest(
 bytes32 _txHash,
 uint256 _outputValueSat,
 address payable _recipient,
 bool _sendEthToUser,
 uint256 _ethTransferGasLimit,

 bytes memory /* any extra data that is needed for this specific gateway co
) external override onlyRegistry {
 ...
 ...
 // transfer converted Btc token
>>> IERC20(token).safeTransfer(_recipient, scaledAmount);
 }

5. The 6-hour period expires, and now the Gateway.owner can make changes to the
contract's state, allowing the Gateway.owner to withdraw the ERC20 tokens.
Meanwhile, the token is unpaused.

6. The relayer attempts to execute releaseFundsAndInvest again, but the Gateway
contract no longer has any tokens available.

WBTC is an example of a token that includes a pause mechanism. This feature
allows the administrators of the token to halt transfers temporarily, which can be
utilized during upgrades or in response to security threats.

contract WBTC is StandardToken, DetailedERC20("Wrapped BTC", "WBTC", 8),
 MintableToken, BurnableToken, PausableToken, OwnableContract {
 ...
 ...

It is recommended to implement a pull mechanism to allow the recipient to obtain
their corresponding tokens once the token is unpaused. Additionally, the balance
should be set aside to prevent the Gateway.owner from withdrawing the ERC20
tokens that are already claimable.

1. The token is paused.
2. The relayer calls Gateway::releaseFundsAndInvest , at which point the ERC20

tokens are deducted from the gateway's balance. This action ensures that the

15

https://etherscan.io/token/0x2260fac5e5542a773aa44fbcfedf7c193bc2c599#code#L650

Gateway.owner cannot withdraw the ERC20 tokens, as they are earmarked to be
retrievable by the recipient as soon as the ERC20 token contract is unpaused.

3. Time passes, the token is unpaused, and the recipient can pull the reserved
tokens.

16

