
BOB Gateway Security Review
Pashov Audit Group

Conducted by: juancito, sashik-eth, ZanyBonzy
September 5th - September 7th

Contents
1. About Pashov Audit Group
2. Disclaimer
3. Introduction
4. About BOB Gateway
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings

8.1. Low Findings
[L-01] PellStrategy#stakerStrategyShares function should
be view
[L-02] Missing slippage for strategies
[L-03] Missing ETH swap slippage
[L-04] Transactions may be stuck for certain recipients
[L-05] Inconsistent use of ETH transfer gas limit
parameter
[L-06] Gas bomb via provided extra data

1

2

2

2

2

3

3
3
4

4

5

7

7

7

7

8

9

10

11

1. About Pashov Audit Group
Pashov Audit Group consists of multiple teams of some of the best smart contract
security researchers in the space. Having a combined reported security
vulnerabilities count of over 1000, the group strives to create the absolute very best
audit journey possible - although 100% security can never be guaranteed, we do
guarantee the best efforts of our experienced researchers for your blockchain
protocol. Check our previous work here or reach out on Twitter @pashovkrum.

2. Disclaimer
A smart contract security review can never verify the complete absence of
vulnerabilities. This is a time, resource and expertise bound effort where we try to
find as many vulnerabilities as possible. We can not guarantee 100% security after
the review or even if the review will find any problems with your smart contracts.
Subsequent security reviews, bug bounty programs and on-chain monitoring are
strongly recommended.

3. Introduction
A time-boxed security review of the bob-collective/bob-gateway repository was
done by Pashov Audit Group, with a focus on the security aspects of the
application's smart contracts implementation.

4. About BOB Gateway
BOB is a hybrid Layer-2 powered by Bitcoin and Ethereum. The design is such that
Bitcoin users can easily onboard to the BOB L2 without previously holding any
Ethereum assets. The user coordinates with the trusted relayer to reserve some of
the available liquidity, sends BTC on the Bitcoin mainnet and then the relayer can
provide a merkle proof to execute a swap on BOB for an ERC20 token.

2

https://github.com/pashov/audits
https://twitter.com/pashovkrum

5. Risk Classification

Severity Impact: High Impact: Medium Impact: Low

Likelihood: High Critical High Medium

Likelihood: Medium High Medium Low

Likelihood: Low Medium Low Low

5.1. Impact

High - leads to a significant material loss of assets in the protocol or significantly
harms a group of users.
Medium - only a small amount of funds can be lost (such as leakage of value) or a
core functionality of the protocol is affected.
Low - can lead to any kind of unexpected behavior with some of the protocol's
functionalities that's not so critical.

5.2. Likelihood

High - attack path is possible with reasonable assumptions that mimic on-chain
conditions, and the cost of the attack is relatively low compared to the amount of
funds that can be stolen or lost.
Medium - only a conditionally incentivized attack vector, but still relatively
likely.
Low - has too many or too unlikely assumptions or requires a significant stake by
the attacker with little or no incentive.

3

5.3. Action required for severity levels

Critical - Must fix as soon as possible (if already deployed)
High - Must fix (before deployment if not already deployed)
Medium - Should fix
Low - Could fix

6. Security Assessment Summary
review commit hash - c26afe6b0c33e82c828de999dbb5b4279d065f8e

fixes review commit hash - 86c81ac6ecf3060f70f66979ec4a3cd8e0ad4f1d

Scope

The following smart contracts were in scope of the audit:

CommonStructs

Constants

Gateway

GatewayRegistry

GatewayRegistryV2

BedrockStrategy

PellStrategy

SegmentStrategy

ShoebillStrategy

SolvStrategy

4

https://github.com/bob-collective/bob-gateway/tree/c26afe6b0c33e82c828de999dbb5b4279d065f8e
https://github.com/bob-collective/bob-gateway/tree/86c81ac6ecf3060f70f66979ec4a3cd8e0ad4f1d

7. Executive Summary
Over the course of the security review, juancito, sashik-eth, ZanyBonzy engaged
with BOB to review BOB Gateway. In this period of time a total of 6 issues were
uncovered.

Protocol Summary
Protocol Name BOB Gateway

Repository https://github.com/bob-collective/bob-gateway

Date September 5th - September 7th

Protocol Type Hybrid Layer 2

Findings Count
Severity Amount

Low 6

Total Findings 6

5

Summary of Findings
ID Title Severity Status

[L-01] PellStrategy#stakerStrategyShares
function should be view Low Resolved

[L-02] Missing slippage for strategies Low Resolved

[L-03] Missing ETH swap slippage Low Acknowledged

[L-04] Transactions may be stuck for certain
recipients Low Acknowledged

[L-05] Inconsistent use of ETH transfer gas
limit parameter Low Acknowledged

[L-06] Gas bomb via provided extra data Low Resolved

6

8. Findings

8.1. Low Findings

[L-01] PellStrategy#stakerStrategyShares
function should be view

Currently PellStrategy#stakerStrategyShares doesn't have a view modifier
since it's calling the external non-view function stakerStrategyShares from
the IPellStrategyManager interface:

File: PellStrategy.sol
10: interface IPellStrategyManager {
...
14: function stakerStrategyShares
 (address staker, IPellStrategy strategy) external returns (uint256);
15: }
...
19: contract PellStrategy is IStrategy, Context {
...
37: function stakerStrategyShares(address recipient) external returns
 (uint256) {
38: return pellStrategyManager.stakerStrategyShares
 (recipient, pellStrategy);
39: }

However, in the current implementation of the pellStrategyManager the
stakerStrategyShares is a view function:
https://explorer.gobob.xyz/address/0x8f083EaFcbba2e126AD9757639c3A1E2
5a061A08?tab=contract

This means that PellStrategy#stakerStrategyShares could be safely
restricted to view , this would simplify on-chain testing of the contract and
allow external integrators, like data collectors, to get the contract's info without
the need to send transactions.

[L-02] Missing slippage for strategies
Strategies don't implement any slippage check.

7

Some strategies might return fewer assets than the user would expect when
sending the Bitcoin transaction with the bridge information. This can be due to
market changes during the bridging process or sandwich attacks. In either of
those scenarios, users might receive fewer assets than expected.

Note: Certain strategies may always return a linear equivalent of tokens (like
Bedrock), but that's not necessarily the case for all, and some might depend on
external actions from the protocol or other users, affecting the outcome.

Consider getting the expected returned assets from a strategy and setting an
appropriate slippage when necessary. This value should be added to the hashed
data on the Bitcoin transaction (inside strategyExtraData for example), to be
decoded later to be applied as a minAmountOut comparison with the returned
assets.

[L-03] Missing ETH swap slippage
The releaseFundsAndInvest() function in Gateway provides a minAmountOut
of zero ETH on swaps. This can lead to the user receiving less ETH than they
expected.

swapper.swapExactTokensForNative(token, cappedAmountToSwap, 0, payable
 (this), new bytes(0))

Note: This has been mentioned in a previous audit, but it was acknowledged
considering non-profitable sandwich attacks, given that the amount to be
swapped would be very low.

Given that there is no on-chain check to prevent users from swapping large
amounts, and that ETH/BTC price fluctuations can happen during the bridging
process (without the need for any sandwich attack), it is important to note that
users may not receive an ETH amount that is acceptable to them.

Consider adding a slippage parameter for ETH swaps. If doing so, that could
be included in the gatewayExtraData , which should be hashed to be included
in the BTC transaction.

Note for upgrades: Be mindful that pending BTC bridge transactions may not
be able to be relayed if not compatible with a new hashing format.

8

[L-04] Transactions may be stuck for
certain recipients

The Gateway contract can swap tokens for ETH when relaying a transaction. It
uses a try/catch mechanism to prevent the transaction from being stuck if the
swapper fails.

The problem is that the relayed transaction can still fail on the .call
interaction since the expected gas to be set for it is 2300.

Certain recipients, like smart wallets, may have fallback functions that require
more than 2300 gas to be executed, and in those cases, the transaction will
always revert.

Subsequent attempts would also fail, and funds from the relayed transaction
might remain stuck.

// After transferred back to the contract, the gas will be limited to 2300
 // by the transfer function before forwarding it to the
 // user supplied address. Doing the transfer directly from the AMM might not
 // limit the gas which could cause reentrancy attack.
 ...

 try swapper.swapExactTokensForNative(token, cappedAmountToSwap, 0, payable
 (this), new bytes(0)) returns (
 uint256 outAmount
) {
 receivedEthFromSwap = outAmount;
 (bool sent,) = _proveBtcTransferArgs.recipient.call{
 value: receivedEthFromSwap,
 gas: _proveBtcTransferArgs.ethTransferGasLimit
 }("");
@> require(sent, "Could not transfer ETH");

 // now subtract the amount that was swapped
 scaledAmountToSendToUser -= cappedAmountToSwap;
 } catch {
 emit EthSwapFailed();
 IERC20(token).safeDecreaseAllowance(address
 (swapper), cappedAmountToSwap);
 }

Note: The ETH swap function is expected to swap small amounts of BTC
tokens to ETH for an EOA to have gas to operate. However, there is no on-
chain limitation that prevents a user from swapping a larger amount and
sending it to their smart wallet or another contract. So, a mitigation for those
cases would be suggested.

9

One possible solution would be that the function in the try statement, tries to
swap the tokens + send them with the expected gas limit altogether.

This way if the operation fails, the users would still receive the BTC tokens to
their recipient address, and the transaction would be relayed.

Note: This won't provide the ETH to the user (although it provides the same
mitigation as if the swap failed)

[L-05] Inconsistent use of ETH transfer gas
limit parameter

The ethTransferGasLimit parameter is passed to the Gateway as part of the
proveBtcTransferArgs to limit the gas spent and to prevent any possible re-
entrancy attacks.

This value is facilitated by the Relayer via a call to proveBtcTransfer() on
the GatewayRegistry .

If the value is too high, the relayer will spend more on gas and it opens up a re-
entrancy opportunity. If the value is too low, the transaction will revert as it
can't send the ETH. So it's crucial to set an appropriate value.

It is also worth noting that an integrity check has been added to the BTC
transfer arguments provided by users to be relayed, but the
ethTransferGasLimit value is not included in it.

Considering all of the previous facts, there are two possible issues:

If the ethTransferGasLimit is arbitrarily set by the relayer, it should not
belong to the proveBtcTransferArgs , as it is not part of the hashed value
coming from the BTC transaction. It can also lead to the possibility of
configuration errors that would block user transactions.
If the ethTransferGasLimit is provided by the user and blindly relayed by
the relayer, that opens up the previously mentioned attack vectors for
anyone.

Recommendation

10

Two approaches can be suggested depending on who is expected to set the
ethTransferGasLimit value.

If the value is expected to be provided by the protocol and to be fixed, a
constant or configurable value would be recommended, as it prevents any error
on the relayer side, even if compromised. It would also be suggested to move
the ethTransferGasLimit value outside of the proveBtcTransferArgs struct,
but given that the current function interface would change, a comment would
be sufficient to prevent compatibility issues.

If the value is expected to be provided by users and later relayed, extra
measures should be taken. Minimum and maximum values should be checked
(considering extra costs for the relayer if fees are sufficient). The value should
also be included in the integrity check (and added to the Bitcoin transaction
hashed data).

[L-06] Gas bomb via provided extra data
Users can provide gatewayExtraData and strategyExtraData values to be
relayed so their transactions can be bridged. There is no extra cost for them on
the Bitcoin chain regardless of the length of those values, as the data will be
hashed first and it would cost the same if it were empty, or if it was huge.

The problem is that the relayer will have to pay extra gas to relay the
transaction with large calldata values even if those values are not used.

An adversary can abuse this to create gas bombs for the relayer.

Require that the length of both gatewayExtraData and strategyExtraData are
below a certain reasonable limit for their expected use, considering the
minimum expected fees.

This value might be configurable or constant, but it has to be enough for any
possible legit scenario, as it would block users' transactions otherwise.

11

