¥ Veridise
Auditing Report

Hardening Blockchain Security with Formal Methods

Veridise Inc.
Feb. 18, 2025

» Prepared For:

RISC Zero
https://risczero.com/

» Prepared By:
Benjamin Mariano

Tyler Diamond
Victor Faltings

» Contact Us:

contact@veridise.com

» Version History:

Feb. 18, 2025 V3
Feb. 17, 2025 V2
Feb. 4, 2025 A%t
Feb. 3, 2025 Initial Draft

© 2025 Veridise Inc. All Rights Reserved.

https://risczero.com/
contact@veridise.com

Contents

Contents 1ii
1 Executive Summary 1
2 Project Dashboard 4
3 Security Assessment Goals and Scope 5
3.1 Security AssessmentGoals o oL o oL 5
3.2 Security Assessment Methodology & Scope 5
3.3 Classification of Vulnerabilities 6
4 Vulnerability Report 7
41 Detailed DescriptionofIssues 8

411 V-KLA-VUL-001: Correct proposal can be rejected when disputed root is
afterthelastblock o L 8
41.2 V-KLA-VUL-002: On-chain conversion to field elements is incorrect . . . 9
41.3 V-KLA-VUL-003: Reentrancy allows unchallengable proposal 1
414 V-KLA-VUL-004: Malicious payout recipient causes DoS 15

41.5 V-KLA-VUL-005: Early exit in proof generation enables fault proof against
anhonest proposal L oL oo 16

41.6 V-KLA-VUL-006: Unchallengable proposal arises from out-of-order elim-
INations e 17
417 V-KLA-VUL-007: Bonds cannot be recovered for honest actors 21

418 V-KLA-VUL-008: Elimination inconsistency off-chain leads to blocked
PIOPOSEIr . . . v v v e e e 22

419 V-KLA-VUL-009: Matches between duplicate proposals off-chain leads to
crashed validator 24
4110 V-KLA-VUL-010: Malicious duplicate game can block proposer progress 26
4111 V-KLA-VUL-011: Proposal with skipped parent crashes proposer 28

4112 V-KLA-VUL-012: Validators blocked from submitting valid proofs due to
inconsistency in child index accounting 29
4113 V-KLA-VUL-013: Off-chain conversion to field elements is incorrect . . . 30
4114 V-KLA-VUL-014: Validators skip submitting proofs on error 31
4115 V-KLA-VUL-015: Insecure key management 32
4116 V-KLA-VUL-016: Not all fields included inrolluphash 33
4117 V-KLA-VUL-017: Missing conversion to field element on output comparison 34
4118 V-KLA-VUL-018: Network issues can crash validator 35

4119 V-KLA-VUL-019: Proofs cannot be submitted for identical proposals with
differing lastelements o o L 36

4.1.20 V-KLA-VUL-020: Elimination round calculation off-chain can become
inconsistent withon-chain, 38
4121 V-KLA-VUL-021: KZG precompile field modulus return not checked . . 39
4.1.22 V-KLA-VUL-022: Fetching blob returns default in the case of no match . 40
4.1.23 V-KLA-VUL-023: Unused program constructs 42
Veridise Audit Report: Kailua Protocol © 2025 Veridise Inc.

4.1.24 V-KLA-VUL-024: Small code suggestions 43

Glossary 45

Veridise Audit Report: Kailua Protocol © 2025 Veridise Inc.

¥ Executive Summary

From Jan. 6, 2025 to Jan. 28, 2025, RISC Zero engaged Veridise to conduct a security assessment
of their Kailua Protocol, which aims to create an infrastructure for optimistic rollups that
resolve disputes with a zero-knowledge virtual machine (zkVM) application. The security
assessment covered the smart contracts, off-chain components, and zkVM application used
to implement the protocol. Veridise conducted the assessment over 9 person-weeks, with 3
security analysts reviewing the project over 3 weeks on commit 6e2ce8f. The review strategy
involved a tool-assisted analysis of the program source code performed by Veridise security
analysts as well as thorough code review.

Project Summary. The security assessment covered the Kailua Protocol implementation,
including both on-and-off-chain components. The implementation can be roughly separated
into the following main components:

e Smart contracts: The smart contracts maintain prospective and finalized proposals (a set
of rollup blocks proposed for finalization). The contracts process and store dispute proofs
and resolve said disputes in order to eventually increment the finalized rollup block.

e zkVM Application: The RISC Zero zkVM is used to prove the execution of the OP-stack
(Optimism’s optimistic rollup implementation) chain derivation function. This application
produces the deterministic rollup state root by deriving it from the rollup data that has
been posted to the base network. In other words, it produces a proof that a given L2 block
has a particular state root which can be used to invalidate proposals made on-chain when
necessary.

e Off-chain components: The off-chain portion primarily consists of the zkVM application
and two addition components: the Proposer and Validator. The former will propose new
proposals when the layer-2 has created enough blocks to do so, and will attempt to finalize
proposals if they are valid and all disputes can be resolved. The Validator monitors the
base network for disputes between proposals that need to be proven in zero-knowledge,
and submits those zero-knowledge proofs to the smart contracts.

Code Assessment. The Kailua Protocol developers provided the source code of the Kailua
Protocol contracts for the code review. The source code appears to be mostly original code
written by the Kailua Protocol developers. It contains some documentation in the form of
READMEs, documentation comments in functions and storage variables. To facilitate the
Veridise security analysts understanding of the code, the Kailua Protocol developers frequently
met with the security analysts and quickly answered any questions that arose.

The source code did not contain a test suite for any of the components.

Summary of Issues Detected. The security assessment uncovered 24 issues, 13 of which are
assessed to be of high or critical severity by the Veridise analysts. For instance, V-KLA-VUL-004
notes an issue in which the rollup ceases to function when a malicious smart contract is set as

Veridise Audit Report: Kailua Protocol © 2025 Veridise Inc.

Contents

the recipient of a successful dispute game reward. Additionally, V-KLA-VUL-006 describes how
certain elimination orders for proposals can again cause the rollup to cease progressing the
finalization of the chain. Veridise analysts also identified 3 medium-severity issues, including
an issue in which validators do not re-attempt to submit proofs when handling erroneous
conditions (V-KLA-VUL-014), as well as 2 low-severity issues, 4 warnings, and 2 informational
findings.

The Kailua Protocol developers have acknowledged all of the issues identified. While all issues
have been addressed, it should be noted that some issues have been marked only as "addressed
and partially verified." The changes introduced to fix these issues were stacked on top of a
number of substantial changes to the code; Veridise auditors validated that each fix removed the
original identified issue, but were unable to verify whether the fixes introduced new /related
bugs with respect to the additional logic. Thus, a status of "addressed and partially verified"
does not necessarily indicate that the fix is known to be wrong or incomplete, but rather that
Veridise auditors were unable to validate whether or not the fixes may have introduced related
or entirely new issues.

Recommendations. After conducting the assessment of the protocol, the security analysts
had a few suggestions to improve the Kailua Protocol.

Documentation. Veridise auditors believe the code quality and security can be substantially
improved by increasing and improving documentation of the project. Although there are
extensive comments on the code within functions, both the smart contracts and Rust code lack
comments at higher-level that help explain the expected use/behavior of functions, function
parameter explanations, etc. Furthermore, there are a number of very subtle assumptions that
are made in the code implicitly that are never explained explicitly. As an example, there is
an implicit assumption in the smart contracts that there is only a single deployed treasury
contract that every subsequent dispute game references. This is never stated explicitly but is a
critical assumption as to the expected behavior of the protocol. Additionally, the analysts believe
documentation describing the expected relationship between on-and-off-chain components
is important for continued security of the protocol, especially if future development on the
codebase occurs. As an example, much of the code in the database is designed to mimic the
eventual behavior of the on-chain dispute resolution. However, the relationship between this
logic off-chain and the on-chain counterparts is never explicitly stated; thus, subtle changes to
either the on or off-chain components could lead to bugs with significant security implications.

Testing. As mentioned in an earlier section, there is currently no testing for this protocol. Thus,
the Veridise team strongly recommends testing common behaviors as well as exceptional
cases for at least the critical portions of the code, including the FPVM and smart contracts.
Furthermore, Veridise auditors suggest running tests in CI/CD to prevent regressions. Veridise
auditors believe adding testing in this way could help avoid a number of the high and critical
issues we identified in this report (e.g., V-KLA-VUL-001).

Redesign considerations. The auditing team noticed there are a few design decisions for Kailua that
introduce significant complexity into the system. It may be that these decisions are necessary to
achieve desired performance, compatibility, or interface; however, the team wanted to explicitly
point these out as they believe these could be sources of vulnerabilities in the future.

© 2025 Veridise Inc. Veridise Audit Report: Kailua Protocol

Contents

e Inheritance hierarchy and use of OP interfaces: The on-chain contracts have a somewhat
complex inheritance/use hierarchy: all contracts are tournaments, there is one treasury
that is also a tournament, and every game that is created is a tournament that also has a
reference to the treasury. Furthermore, these contracts inherit from OP’s IDisputeGame
interface, which defines a number of constructs which are not quite applicable to the
actual use-case in Kailua (such as the GameStatus enum, where the CHALLENGER_WINS status
is never used).

e Code/logic duplication: A number of the bugs identified arise from a disconnect between
off-chain logic and on-chain logic which are designed to compute the same thing (e.g.
V-KLA-VUL-008). As much as possible, the Veridise team suggests querying contracts
directly to avoid duplication of logic and guarantee consistent state on-and-off-chain.

e Dispute resolution and player elimination: In the audit, the Veridise team discovered a
number of bugs that arose from (1) the ability of a proposer to propose as many proposals
as they want with a single bond and (2) assumptions made about the order of challenge
resolution and the state of a contender. As a result, we suggest the developers revisit these
design decisions to simplify as much as possible. For example, is it necessary to have
one bond cover infinite proposals until one is successfully disputed or can each proposal
receive its own bond?

Out-of-scope code. During the review of the code, Veridise auditors noted that some behaviors
that are of critical importance to the correctness/safety of the protocol are not in-scope. This
includes interactions with Kona*, an external library used by the zkVM application for chain
derivation and interactions with Zeth?, an additional external library used to populate the oracle
with L1 information. Since these libraries contain complex logic essential for Kailua’s proper
functioning, and given that Kona is still under active development and is not recommended
for production use, Veridise auditors recommend including these libraries in future security
reviews.

Disclaimer. We hope that this report is informative but provide no warranty of any kind,
explicit or implied. The contents of this report should not be construed as a complete guarantee
that the system is secure in all dimensions. In no event shall Veridise or any of its employees be
liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise,
arising from, out of or in connection with the results reported here.

*https://github.com/op-rs/kona
t https://github.com/risc0/zeth

© 2025 Veridise Inc. Veridise Audit Report: Kailua Protocol

https://github.com/op-rs/kona
https://github.com/risc0/zeth

2 \Z Project Dashboard

Table 2.1: Application Summary.

Platform

Kailua Protocol 6e2ce8f Soldity, Rust Ethereum, RISC Zero

Table 2.2: Engagement Summary.

Method Consultants Engaged Level of Effort

Jan. 6-Jan. 28, 2025 Manual & Tools 9 person-weeks

Table 2.3: Vulnerability Summary.

Adnovicized

Critical-Severity Issues

High-Severity Issues 7 7 7
Medium-Severity Issues 3 3 1
Low-Severity Issues 2 2 1
Warning-Severity Issues 4 4 3
Informational-Severity Issues 2 2 2
TOTAL 24 24 19

Table 2.4: Category Breakdown.

Logic Error 17
Denial of Service 3
Maintainability 2
Reentrancy 1
Authorization 1

Veridise Audit Report: Kailua Protocol © 2025 Veridise Inc.

'\"4 Security Assessment Goals and Scope

3.1 Security Assessment Goals

The engagement was scoped to provide a security assessment of Kailua Protocol’s smart
contracts and off-chain components. During the assessment, the security analysts aimed to
answer questions such as:

e Are common smart contract pitfalls (reentrancy, ownership validation, etc) avoided?
Are the smart contracts or off-chain components vulnerable to Denial-of-Service attacks?
Can smart contract calls be frontrun or replayed?

Can invalid state transitions be proven by the zkVM application?

Can a valid proposal be successfully disputed?

Can a user steal bond from another user without providing a successful dispute proof

against that user?
Are the inputs to the RISC Zero zkVM correctly validated?
e Can an invalid proposal maliciously prevent honest users from challenging it and thus

become finalized without competition?
Will the Proposer always post valid proofs?

3.2 Security Assessment Methodology & Scope

Security Assessment Methodology. To address the questions above, the security assessment
involved a combination of human experts and automated program analysis & testing tools. In
particular, the security assessment was conducted with the aid of the following technique:

e Static analysis. To identify potential common vulnerabilities, security analysts leveraged
Veridise’s custom smart contract analysis tool Vanguard, as well as the open-source tool
Slither. These tools are designed to find instances of common smart contract vulnerabilities,
such as reentrancy and uninitialized variables.

Scope. The scope of this security assessment is limited to the following folders of the source
code provided by the Kailua Protocol developers:

e bin/

- cli/: All files except bench.rs, fast_track.rs, fault.rs and the providers/ folder.
- client/
- host/

e build/risczero/: fpvm/src/main.rs and src/lib.rs
® crates/common/src
e crates/common/contracts/src, excluding the vendor folder

Veridise Audit Report: Kailua Protocol © 2025 Veridise Inc.

Contents

Methodology. Veridise security analysts read the provided Kailua Protocol documentation to
understand the high-level goals of the code. They then began a review of the code assisted by
static analyzers.

During the security assessment, the Veridise analysts regularly met with the Kailua Protocol
developers to ask questions about the code.

3.3 Classification of Vulnerabilities

When Veridise security analysts discover a possible security vulnerability, they must estimate
its severity by weighing its potential impact against the likelihood that a problem will arise.

The severity of a vulnerability is evaluated according to the Table 3.1.
Table 3.1: Severity Breakdown.

Somewhat Bad Bad Very Bad Protocol Breaking

Not Likely NI MGRE M I Lowa i Medium
Likely [0 Wasing ol Low. | Medium [0 High S
Very Likely [nBoWe] Medium [g IR

The likelihood of a vulnerability is evaluated according to the Table 3.2.

Table 3.2: Likelihood Breakdown

Not Likely | A small set of users must make a specific mistake
Requires a complex series of steps by almost any user(s)
Likely | - OR -

Requires a small set of users to perform an action

Very Likely | Can be easily performed by almost anyone

The impact of a vulnerability is evaluated according to the Table 3.3:
Table 3.3: Impact Breakdown

Somewhat Bad | Inconveniences a small number of users and can be fixed by the user
Affects a large number of people and can be fixed by the user

Bad | -OR-

Affects a very small number of people and requires aid to fix

Affects a large number of people and requires aid to fix

Very Bad | -OR -

Disrupts the intended behavior of the protocol for a small group of
users through no fault of their own

Protocol Breaking | Disrupts the intended behavior of the protocol for a large group of
users through no fault of their own

© 2025 Veridise Inc. Veridise Audit Report: Kailua Protocol

¥ Vulnerability Report

This section presents the vulnerabilities found during the security assessment. For each issue
found, the type of the issue, its severity, location in the code base, and its current status (i.e.,

acknowledged, fixed, etc.) is specified. Table 4.1 summarizes the issues discovered:

V-KLA-VUL-001
V-KLA-VUL-002
V-KLA-VUL-003
V-KLA-VUL-004
V-KLA-VUL-005
V-KLA-VUL-006
V-KLA-VUL-007
V-KLA-VUL-008
V-KLA-VUL-009
V-KLA-VUL-010
V-KLA-VUL-011

V-KLA-VUL-012
V-KLA-VUL-013
V-KLA-VUL-014
V-KLA-VUL-015
V-KLA-VUL-016
V-KLA-VUL-017
V-KLA-VUL-018
V-KLA-VUL-019
V-KLA-VUL-020
V-KLA-VUL-021
V-KLA-VUL-022
V-KLA-VUL-023
V-KLA-VUL-024

Table 4.1: Summary of Discovered Vulnerabilities.

D Description [Severity | Status |

Correct proposal can be. ..
On-chain conversion to. ..
Reentrancy allows. ..

Malicious payout recipient. . .

Early exit in proof. ..

Unchallengable proposal. ..

Bonds cannot be recovered . ..
Elimination inconsistency . ..
Matches between duplicate.. . .
Malicious duplicate game. ..

Proposal with skipped. ..

Validators blocked from. ..

Off-chain conversion to. . .

Validators skip submitting . . .

Insecure key management

Not all fields included in.. . .
Missing conversion to field . ..
Network issues can crash. ..
Proofs cannot be submitted . . .

Elimination round. ..
KZG precompile field . . .
Fetching blob returns. ..

Unused program constructs

Small code suggestions

Veridise Audit Report: Kailua Protocol

Critical
Critical
Critical
Critical
Critical
Critical
High
High
High
High
High
High
High
Medium
Medium
Medium
Low
Low
Warning
Warning
Warning
Warning
Info
Info

Fixed
Fixed
Fixed
Fixed
Addressed and Partially Verified
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Addressed and Partially Verified
Addressed and Partially Verified
Fixed
Fixed
Addressed and Partially Verified
Addressed and Partially Verified
Fixed
Fixed
Fixed
Fixed
Fixed

© 2025 Veridise Inc.

Contents

4.1 Detailed Description of Issues

4.1.1 V-KLA-VUL-001: Correct proposal can be rejected when disputed root is after
the last block

SIaely M Critical 6e2ce8f
8428 Logic Error Fixed

File(s) KailuaTournament.sol
Location(s) prove
Confirmed Fix At f402ec3

The prove function takes in the value uvo[2] which stores the index of the first root in the blobs
at which the contender and opponent disagree. This index is assumed to be less than
PROPOSAL_BLOCK_COUNT which is intended to indicate the number of state roots considered by a
proposal but this is never enforced.

Impact If this value is made greater than the intended number of state roots, it can be used by
a malicious actor to disprove a correct proposal by the malicious proposal taking advantage of
the unused blob elements after the intended last root.

Recommendation Enforce that uvo[2] is less than PROPOSAL_BLOCK_COUNT.

Disclosure This issue was found by developers during the early part of the audit and was
shared with the audit team. The team verified that this is an issue and included it in the report
for completeness.

Developer Response The developers now check that uvo[2] is less than
PROPOSAL_BLOCK_COUNT.

© 2025 Veridise Inc. Veridise Audit Report: Kailua Protocol

10
11
12
13
14
15
16
17

Contents

4.1.2 V-KLA-VUL-002: On-chain conversion to field elements is incorrect

Critical 6e2cesf
Logic Error Fixed
KailuaLib.sol
hashToFe
5586eld

The function hashToFe is a simple helper function used to take a uint256 value and covert it to a
field element in the BLS12-381 field. As described in EIP-4844, blob elements are assumed to be
elements in the scalar field for BLS12-381. The logic for hashToFe is shown below.

function hashToFe(bytes32 hash) internal pure returns (bytes32 fe) {
fe = ((hash << 2) >> 2);

-

Snippet 4.1: Implementation of hashToFe

As one can see, this converts a 32 byte value to a field element fe by zeroing out the first two
bits (i.e., leaving 254 bits to represent the value). However, it turns out the scalar field prime for
BLS12-381 is greater than 22>* — 1. This means that for any field element x (represented as a
bytes32) where x > 22°* — 1 there is another field element x’ = x mod 2?°* such that
hashToFe(x) = hashToFe(x’).

Impact This helper function is used in two places and can thus lead to two different exploits.

Rejecting valid proposals First, it is used in the prove function of KailuaTournament when
comparing the proposed output of a competitor with the actual computed output by the circuit.
In particular, the logic is shown below.

if (proposedOutput[0] == proposedOutput[1]) {
revert NoConflict();
}
if (Kailualib.hashToFe(proposedOutput[0]) != KailualLib.hashToFe(computedOutput)) {
// u lose
if (Kailualib.hashToFe(proposedOutput[1]) '= KailualLib.hashToFe(computedOutput))
{
// v lose
proofStatus[uvo[0]][uvo[1l]] = ProofStatus.U_LOSE_V_LOSE;
} else {
// vV win
proofStatus[uvo[0@]][uvo[1l]] = ProofStatus.U_LOSE_V_WIN;
}
} else {
// u win
proofStatus[uvo[0@]][uvo[1l]] = ProofStatus.U_WIN_V_LOSE;
}

Snippet 4.2: Comparison logic in prove

© 2025 Veridise Inc. Veridise Audit Report: Kailua Protocol

https://eips.ethereum.org/EIPS/eip-4844#point-evaluation-precompile

10

0 N o U W N

Contents

As shown above, a challenge is only accepted if the two competitors disagree on the proposed
output. However, an attacker can use this vulnerability to suggest a different proposed output
from the correct proposal by first finding some output that is greater than 2°* — 1, computing
x" = x mod 2%*, and proposing that. In that case, their proposed output is not equal to the
contender’s proposed output but the check

Kailualib.hashToFe(proposedOutput[0]) !'= KailualLib.hashToFe(computedOutput) will be
true.

Unverifiable blobs In the verifyKzZGBlobProof function, hashToFe is used to normalize a blob
value before performing the KZG check in the following call.

bytes memory kzgCallData = abi.encodePacked(
versionedHash, // proposalBlobHash().raw(),
root0OfUnity,
hashToFe(value),
blobCommitment,
proof

);

(success,) = KZG.call(kzgCallData);

Snippet 4.3: Implementation of hashToFe

As one can see, this converts the provided value (which is a bytes32 representing a field

element) to a field element using hashToFe. If this value is a field element that is greater than

225 — 1, than this will call will change the element to a different field element that will no

longer pass the check.

Recommendation Replace hashToFe with a proper conversion to a scalar field element.

Developer Response The developers have added the proper conversion.

© 2025 Veridise Inc. Veridise Audit Report: Kailua Protocol

11

A W N R

© 00 N O U A W N =

e e e
o U A W N R ©

Contents

4.1.3 V-KLA-VUL-003: Reentrancy allows unchallengable proposal

Critical 6e2ces
Reentrancy Fixed
KailuaTournament.sol, KailuaTreasury.sol
pruneChildren, eliminate

5586e1d

The following pay function in KailuaTreasury is called when a proposal is successfully

eliminated (via a call to eliminate) and sends the funds to the recipient. The external call can be
used as a reentry point by a malicious user who was registered as the payout recipient for a
successful proof.

function pay(uint256 amount, address recipient) internal {
(bool success,) = recipient.call{value: amount}(hex"");
if (!success) revert BondTransferFailed();

}

Snippet 4.4: Implementation of pay

eliminate is called in the pruneChildren function in KailuaTournament when either a contender
or an opponent is shown to be invalid. This call occurs in the following loop.

KailuaTournament contender = children[u];
for (; v < children.length && eliminationLimit > 0; (v++, eliminationLimit--)) {
KailuaTournament opponent = children[v];

ProofStatus proven = proofStatus[ul([v];

require(proven != ProofStatus.NONE);

if (proven == ProofStatus.U_LOSE_V_WIN) {
KAILUA_TREASURY.eliminate(address(contender), prover[ul[v]);
u=v;
contender = opponent;

} else {
KAILUA_TREASURY.eliminate(address(opponent), prover[ul[v]);

}

contenderIndex = u;
opponentIndex = v;

Snippet 4.5: Calling eliminate in prove (some checks and comments have been elided)

An attacker can use this reentrant point in eliminate to reenter pruneChildren and critically to
reset the contenderIndex to point to a contender who has already been eliminated. Once this
happens, a contender can never be eliminated and thus will eventually either become the
finalized proposal even though they are incorrect if there are no challenges or will block the
protocol if there are challenges.

Illustrative Example To better understand how this attack can occur, consider the following
example. Let us suppose that the protocol has been initialized (so the treasury is deployed, it

has been resolved, the Kailua Game has been appropriately setup in the dispute game factory,
etc.). Furthermore, let us suppose that propose has been called three times to create children co,

© 2025 Veridise Inc. Veridise Audit Report: Kailua Protocol

12

© 00 N O U A W N =

e e el e i e e i =
O© 00 N O U A W N = O

v A W N =

Contents

c1, and c2 (in that order) and that they were proposed by users ul, u2, and u3 respectively. Let
us also suppose two proofs have been submitted: one for (c@, c1) that successfully shows that
c1 wins and one for (c1, c2) that shows that c2 wins. Let us suppose the first proof for

(c0, cl) was proved by an attacker who set their own malicious attack contract A as the payout
recipient for the proof.

Now, suppose we call pruneChildren with an eliminationLimit of 1. Execution of the function
starts by setting u to @ and v to 1. It then enters the loop, where it fetches the proof status for
(c®, c1) and upon learning that c0 lost, calls eliminate on c@ specifying A as the payout
recipient. Executing eliminate performs three checks and then calls pay:

// INVARIANT: Only the child’'s parent may call this
KailuaTournament parent = child.parentGame();
if (msg.sender !'= address(parent)) {
revert Blacklisted(msg.sender, address(parent));
}
// INVARIANT: Only known proposals may be eliminated
address eliminated = proposerOf[address(child)];
if (eliminated == address(0x0)) {
revert NotProposed();
}
// INVARIANT: Cannot double-eliminate players
if (eliminationRound[eliminated] > 0) {
revert AlreadyEliminated();

// Record elimination round
eliminationRound[eliminated] = child.gameIndex();
// Transfer bond payment to the game’s prover
pay(paidBonds[eliminated], prover);

Snippet 4.6: Snippet from eliminate

As indicated in the comments, we check that the caller is the parent (which it is when it is called
in pruneChildren), the proposal is known (which is true of all proposals considered when
pruning), and the proposer has not already been eliminated (which is true as u6 has not yet
been eliminated). In this case, all checks pass, u0 is registered as eliminated, and pay is called
with A as the recipient. Let us suppose A has the following simple fallback that calls
pruneChildren again with an elimination limit of 2.

fallback() external payable {
KAILUA_GAME.pruneChildren(2);

Snippet 4.7: Example attack contract fallback.

When invoking pruneChildren from the fallback, the following logic is triggered to initialize the
contender u and opponent v.

// Resume from last surviving contender
uint64 u = contenderIndex;
if (u == 0) {
// Select the first possible contender
for (; u < children.length && eliminationLimit > 0; (u++, eliminationLimit--)) {

© 2025 Veridise Inc. Veridise Audit Report: Kailua Protocol

13

© 0 N o

11
12
13
14
15
16

Contents

if ('!'isChildEliminated(children[u])) {
break;

}

// Resume from last unprocessed opponent
uint64 v = opponentIndex;

if (v ==20) {
// Select first possible opponent
V=u+1l;

}

Snippet 4.8: Snippet from pruneChildren.

Again, u is initially set to 8. However, The loop will now indicate that
isChildEliminated(children[0]) is true because c0 was eliminated at the end of the eliminate
function before pay was called in the first invocation of pruneChildren. Thus, u becomes 1 and v
becomes 2 and the eliminationLimit is dropped to 1. Now, the loop executes, the proof for
(cl, c2) is fetched, and it is found that c2 won so c1 is eliminated. We suppose the payout
recipient is normal for this one and note that elimination succeeds because ul (the proposer of
c1) has not yet been eliminated. Thus elimination of c1 succeeds. After this, u is set to 2 and the
new contender to be the opponent. Now, because the eliminationLimit has dropped to 0, the
loop exits and the contenderIndex is set to u which is 2 and the opponentIndex is set to v which
is 3. This ends the function and thus ends execution of the fallback within A.

Back in the original execution, we have finished processing the elimination of c06. We set u to be
1 and the new contender to be the opponent (in this case, the opponent is c1 so c1 is now the
new contender). Now, because the eliminationLimit has dropped to 6, the loop exits and the
contenderIndex is set to u which is 1 and the opponentIndex is set to v which is 2. After this, the
function finishes executing.

Now we are in the state where the contenderIndex is 1 which refers to the child c1 whose
proposer ul was eliminated via the reentrant call. c1 is known to be invalid (as it was already
disproven by c2). However, suppose we try to get c1 eliminated. To do so, we call
pruneChildren(1). uis initialized to 1 (and the loop to update it is not invoked because u is not
0). v is initialized to 2. We enter the loop and again fetch the proof status for (c1, c2).On
learning c1 lost, we attempt to eliminate its proposer ul. However, because the proposer for c1
has already been eliminated, the call to eliminate fails and thus the transaction reverts.

In general, now that c1 is the contender but is already eliminated, any future attempt to
eliminate them will fail.

We have included a proof-of-concept foundry test for a simplified version of the contracts here
for reference as well. Just run forge test to run the test case that shows the exploit.

reentrancy-poc.zip

Impact As shown through the example above, this can allow an invalid proposal to block
progress indefinitely, leading to a denial of service.

© 2025 Veridise Inc. Veridise Audit Report: Kailua Protocol

Reentrancy%20allows%20unchallengable%20proposal%2017f105edf1db80b995d3ea7bf1d88c24/reentrancy-poc.zip

14 Contents

On a less serious note, a very similar reentry can also be used to resolve the same claim twice.
While this will not do much, it will result in potentially multiple emissions of the Resolved
event which could mislead 3rd party applications.

Recommendation To disallow the particular reentrancy attack outlined, we suggest that
reentrancy guards are used to disallow reentry into the pruneChildren function.

More generally, we suggest careful consideration of reentrancy as a possible concern. While this
is the only specific attack we have discovered, the protocol makes numerous cross-contract calls
with a variety of (often unstated) assumptions. We strongly suggest careful consideration of
whether these are all necessary and, if so, abundant use of reentrancy guards including possible
cross-contract protection when necessary.

Developer Response The developers do not send payments in the eliminate() function, and
the new claimEliminationBonds() function is reentrancy protected. Thus, the immediate
reentrancy concern is resolved. However, this change was made alongside a number of
functional changes to the logic that could introduce other issues. Veridise strongly recommends
to developers that the new logic be audited in its entirety to ensure no new or related issues
were introduced and has thus marked the issue as "partially fixed".

© 2025 Veridise Inc. Veridise Audit Report: Kailua Protocol

15

A W N R

Contents

4.1.4 V-KLA-VUL-004: Malicious payout recipient causes DoS

Criica be2ces

Denial of Service Fixed
KailuaTournament.sol, KailuaTreasury.sol
pruneChildren, eliminate

27decs?

When submitting a proof, the creator of the proof can choose whichever address they want to
receive the payout for the elimination. The payout recipient is sent the funds during calls to
eliminate in the treasury via a call to the following function.

function pay(uint256 amount, address recipient) internal {
(bool success,) = recipient.call{value: amount}(hex"");
if (!success) revert BondTransferFailed();

}

Snippet 4.9: Implementation of pay

pay is called by eliminate which is called in the pruneChildren function in KailuaTournament
when either a contender or an opponent is shown to be invalid and thus can be eliminated.
Because the call to pay will revert if the call reverts, a malicious payout recipient that always
reverts will block successful execution of pruneChildren and will block successful execution of
the function.

Impact This can block the protocol indefinitely by making it impossible to resolve a correct
proposal.

Recommendation There are a few ways to avoid the DoS risk here. One is to not check the
success status of the call to the recipient. However, this could result in lost funds for a user.
Another option is to make a separate function that allows users to claim rewards at a later
time - this solution avoids ignoring the success status but could lead to other unexpected
vulnerabilities if not implemented carefully.

Developer Response The developers have moved payout functionality to a function that
requires a separate call, and therefore calls to the msg.sender account are not done in the
eliminate() flow.

© 2025 Veridise Inc. Veridise Audit Report: Kailua Protocol

16

Contents

4.1.5 V-KLA-VUL-005: Early exit in proof generation enables fault proof against an
honest proposal

SI3 Syl Critical 6e2ce8f

#8418 Logic Error Addressed and Partially Verified
File(s) crates/common/src/client.rs
Location(s) run_client
Confirmed Fix At 871eb34

In the off-chain code, the following check is performed to early exit before doing validation if the
claimed output root is equal to the agreed L2 output root.

if boot.agreed_12_output_root == boot.claimed_12_output_root {
return Ok((precondition_hash, Some(boot.claimed_12_output_root)));

-

Snippet 4.10: Snippet from run_client()

This allows anyone to offer a proof that simply copies the agreed root into the next index that
will be able to disprove the actual valid proposal.

Impact This allows honest proposals to be disproved and invalid ones to take their place.

Recommendation Remove this check.

Disclosure This issue was found by developers during the early part of the audit and was
shared with the audit team. The team verified that this is an issue and included it in the report
for completeness.

Developer Response The developers have removed the check and thus the immediate issue
has been resolved. However, this change was made alongside a number of functional changes
to the logic that could introduce other issues. Veridise strongly recommends to developers that
the new logic be audited in its entirety to ensure no new or related issues were introduced and
has thus marked the issue as "addressed and partially verified".

© 2025 Veridise Inc. Veridise Audit Report: Kailua Protocol

17

© 00 N O U A W N =

A W N R

Contents

4.1.6 V-KLA-VUL-006: Unchallengable proposal arises from out-of-order
eliminations

Severity H@silell 6e2ce8f
8428 Logic Error Fixed

File(s) KailuaTournament.sol
Location(s) pruneChildren
Confirmed Fix At 871eb34

When eliminating a proposal, its proposer will also be eliminated. This is done by storing an
eliminationRound mapping containing an entry for every eliminated proposer. Each such entry
stores the game index of the proposal responsible for a proposer’s elimination. This is assumed
to be the first dishonest proposal made by that proposer.

// Record elimination round

eliminationRound[eliminated] = child.gamelIndex();

Snippet 4.11: Snippet from KailuaTreasury.eliminate(...)

When considering child proposals as potential contenders, a check is done to ensure that their
proposer was not already eliminated prior to making that proposal. This behavior is reflected in
the following function.

function isChildEliminated(KailuaTournament child) internal returns (bool) {
address _proposer = KAILUA_TREASURY.proposerQf(address(child));
uint256 eliminationRound = KAILUA_TREASURY.eliminationRound(_proposer);
if (eliminationRound == 0 || eliminationRound > child.gameIndex()) {
// This proposer has not been eliminated as of their proposal at gamelndex
return false;
}
return true;
}

Snippet 4.12: Implementation of isChildEliminated

As shown, a child is considered "eliminated" if the "elimination round" for its proposer is less
than or equal to the current child’s index and is non-zero. Later on, if a child is eliminated, the
eliminate function on the treasury is called, and only succeeds if the proposer of the child is
not already eliminated per the following check.

// INVARIANT: Cannot double-eliminate players
if (eliminationRound[eliminated] > 0) {
revert AlreadyEliminated();

-

Snippet 4.13: Check in eliminate

If eliminate fails this check and reverts, the whole call to pruneChildren will revert.

The key issue here is that it is possible for the treasury to eliminate a proposer p at an
elimination round r while also having an incorrect proposal ¢ made by p with indexi < rasa
child of another game. If proposal c later becomes a contender in the canonical chain, the
protocol will become stuck.

© 2025 Veridise Inc. Veridise Audit Report: Kailua Protocol

18 Contents

Illustrative Example Consider the following example scenario showing how this can be
exploited.

Actors

e Alice - an honest proposer
e Mallory - a dishonest proposer

Chain of Actions

1. The Kailua treasury is initialized and resolved trivially

2. Alice submits a proposal A, which is an honest proposal (it cannot be proven wrong, and
will be accepted after the challenge period)

3. Mallory submits a proposal B, as a child of A. B is a dishonest proposal and can be proven
wrong with the FPVM.

4. Mallory submits a proposal C, as a sibling of A. Cis also a dishonest proposal that can be
proven wrong.

5. pruneChildren is called on the treasury.

The resulting state of the chain is shown in the diagram below. Honest proposals are outlined
in green, dishonest proposals are outlined in red. The numbers in the nodes correspond to that
proposal’s index in the dispute game factory (DGF).

© 2025 Veridise Inc. Veridise Audit Report: Kailua Protocol

19

Contents

Kailua Treasury

Initial root proposal

Consequences When calling pruneChildren on the root, proposal C will be proven to be faulty
and as a result its proposer Mallory will be eliminated. The treasury will note the
eliminationRound to be the index of C in the DGF i.e. 3.

However, since Mallory submitted proposal B before C, it will not be ignored from any
tournaments, since its index in the DGF will be lower than the stored eliminationRound for
Mallory.

But proposal B itself is dishonest, and therefore should be proven faulty when trying to prune
the children of A.

© 2025 Veridise Inc. Veridise Audit Report: Kailua Protocol

20

Contents

This can however never happen, as its proposer has already been eliminated
(eliminationRound > 0). As a result, the system can never progress.

Impact This can cause pruneChildren to become stuck indefinitely and progress of the
protocol to become halted.

Recommendation A simple fix here is not obvious to us. One possible option is to remove the
check in eliminate and thus allow "double elimination" of a user. This would avoid deadlock
but would require people be willing to disprove dishonest proposals for no reward. In general,
any fix here should avoid the possibility that an eliminated contender blocks progress of the
protocol.

Developer Response The developers made it so that proposals must be submitted by increasing
L2 block number which blocks this attack which relies on out-of-order proposal submissions.

© 2025 Veridise Inc. Veridise Audit Report: Kailua Protocol

21

© 00 N O U B W N =

Contents

4.1.7 V-KLA-VUL-007: Bonds cannot be recovered for honest actors

High 6e2ces
Logic Error Fixed
KailuaTreasury.sol
propose
bd76b76

Users can submit a claim by calling propose on the KailuaTreasury contract. The logic shown

below is used to ensure that proposals can only be made if the user includes enough bonds to
exceed the threshold participationBond.

// Update proposer bond
if (msg.value > 0) {
paidBonds[msg.sender] += msg.value;

-

// Check proposer bond
if (paidBonds[msg.sender] < participationBond) {
revert IncorrectBondAmount();

-

Snippet 4.14: Snippet from propose()

When an invalid claim is eliminated via the eliminate function, the bonds associated with the
user whose claim was invalid are sent to the user who proved the claim was invalid. However,
in the event that the claim is successful and accepted, the user cannot reclaim their bond even if
they have no remaining open claims. Furthermore, not only can the user not recover the funds,
even of the owners of the contract cannot withdraw the funds, meaning they are simply stuck
in the contract.

Impact Honest users will lose their bonds and eventually potentially large amounts of funds
will become locked in the treasury.

Recommendation Allow users to withdraw their bonds if they have no outstanding games.

Developer Response The developers have implemented a claimProposerBond() function,
which will allow a user to claim their bond once their last proposals is resolved. This allows an
honest proposer to safely withdraw their bond if they have no additional pending proposals
after that proposal and critically still allows them to withdraw even if some of the honest
proposer’s proposals were skipped. However, the logic does require an honest proposer to
potentially continue to propose after they want to withdraw their bond until eventually their
proposal is the one that is resolved as the winner for that round. This delay might not be ideal
for honest proposers who want to quickly withdraw their funds.

© 2025 Veridise Inc. Veridise Audit Report: Kailua Protocol

22

v A~ W N

Contents

4.1.8 V-KLA-VUL-008: Elimination inconsistency off-chain leads to blocked
proposer

Sy High 6e2ce8f
§34 L8 Denial of Service Fixed

File(s) bin/cli/src/db/mod.rs
Location(s) determine_tournament_participation
Confirmed Fix At 871eb34

The code in the Kailua database is meant to simulate the progress of proofs on-chain off-chain
so that the proposer logic can track the correct "canonical" proposal and suggest new proposals
as descendants of canonical proposals. There is an assumption built into this logic that the
"canonical" proposal off-chain should be the same proposal that (eventually) wins the
corresponding on-chain tournament. The code attempts to ensure this by simulating the
challenges that will occur on-chain. While this simulation is mostly accurate, it does miss a key
behavior that is present on-chain that can cause inconsistencies. In particular, consider the
following check from pruneChildren on the on-chain contracts.

// If the contender hasn’t been challenged for as long as the timeout, declare them
winner
if (contender.getChallengerDuration(opponent.createdAt().raw()).raw() == 0) {
// Note: This implies eliminationLimit > 0
break;

-

Snippet 4.15: Snippet from pruneChildren()

This check happens before any player elimination happens and early exits out of the tournament
loop if enough time has passed in between opponents to simply declare the contender the
winner with no proof necessary. Off-chain, no such check exists.

Impact This can result in the eliminations off-chain being out-of-sync with the on-chain
eliminationRound mapping. Because proposals are filtered based on their elimination status,
this can cause a proposal that is "canonical” on-chain to be ignored off-chain, ultimately leading
to a canonical proposal off-chain that is unresolvable.

Illustrative Example To better understand this attack, consider the following steps that happen
(in the order described):

The Kailua treasury is initialized and resolved.

Alice submits an honest proposal A as a child of the treasury.
MAX_CLOCK_DURATION amount of time passes.

Bob submits a dishonest proposal B as a child of the treasury.
Bob submits an honest proposal C as a child of A.

Alice submits an honest proposal D as a child of A.

ARSI

On-chain, A is chosen as the winner of the treasury’s tournament. A is also considered the
canonical proposal for this tournament off-chain. On-chain, because B was submitted after

© 2025 Veridise Inc. Veridise Audit Report: Kailua Protocol

23 Contents

MAX_CLOCK_DURATION passed, B is not eliminated. However, off-chain, B’s proposer is eliminated
(i.e., Bob is added to eliminations) because there is no such check.

Now, for the tournament under A, on-chain, C is the contender and (because it is honest) will not
be able to be defeated. Off-chain however will be different. Because Bob is the sender of € and
Bob is eliminated, C is skipped and D becomes the canonical proposal. The proposer will now

continually try to resolve D as the canonical winner of the tournament under A but will never be
able to succeed.

Recommendation Add the same check for time between challenges to the off-chain logic.

Developer Response The developers have added the timeout check to the off-chain database.

© 2025 Veridise Inc. Veridise Audit Report: Kailua Protocol

24

v A W N =

Contents

4.1.9 V-KLA-VUL-009: Matches between duplicate proposals off-chain leads to
crashed validator

Severity [gif:sl 6e2ce8f
8428 Logic Error Fixed

1 316)) bin/cli/src/db/mod.rs
Location(s) determine_tournament_participation
Confirmed Fix At f402ec3

When loading proposals from the Dispute Game Factory (DGF), the database (DB) internally
tracks which conflicting pairs of proposals will eventually need to be settled via a dispute game
on-chain. However, there are some inconsistencies in the off-chain logic compared to the smart
contracts. Notably, there is no check to avoid matching proposals against duplicate versions of
them.

In the KailuaTournament.pruneChildren(...) function, a number of checks are done in order to
avoid playing out dispute games between proposals in certain scenarios. For example, two
proposals from the same proposer should never challenge each other. Additionally, a proposal
should never challenge a duplicate of itself.

// If the opponent proposal is an identical twin, skip it
if (contender.rootClaim().raw() == opponent.rootClaim().raw()) {
uint64 common;
for (common = 0; common < PROPOSAL_BLOBS; common++) {
if (contender.proposalBlobHashes(common).raw() !'= opponent.proposalBloHashes(
common) .raw()) {
break;
}
}
if (common == PROPOSAL_BLOBS) {
// The opponent is an unjustified duplicate proposal. Ignore it.
continue;
}
}

Snippet 4.16: Snippet from pruneChildren(...) function in the KailuaTournament contract.

In the off-chain component similar checks are performed when loading proposals from the
DGEF into the DB (such as checking for self-conflicts of a given proposer). These checks are
performed in the determine_tournament_participation function. The result of this function
will determine whether or not a given proposal will be processed by the proposer and validator
agents. However, one notable omission from this function is a check for duplicate proposals.
These will therefore not be omitted from the tournament.

The validator’s primary function is to generate proofs for proposals that are participating in the
tournament against their contender field. This contender field mirrors the state of the
KailuaTournament’s contenderIndex at the time of a proposal’s consideration in pruneChildren.
A proof will be requested between proposal and contender whenever proposal is determined to
participate in the tournament.

However, before requesting a proof the validator performs a number of checks on the state of
proposal and contender. One such check is to find a divergence point between the two.

© 2025 Veridise Inc. Veridise Audit Report: Kailua Protocol

25

Contents

Crucially if a divergence point is not found, the function will panic due to the use of the
expect () function.

let challenge_point = contender
.divergence_point(proposal)
.expect("Contender does not diverge from proposal.") as u64;

Snippet 4.17: Snippet from the request_proof(...) function in the validator logic.

If two proposers submit proposals A and B, where A and B are both identical copies of the
"correct” proposal. They can be sure that when loading in proposal B, its contender field will
point to a duplicate of itself (either A, or another version of the "correct” proposal submitted
before A). The validator will then request a proof for B and its duplicate, leading to a crash when
it cannot find a divergence point between the two proposals.

Impact As shown above, the vulnerability can crash any validator instance.

Recommendation Patch the off-chain component to correctly mirror the logic of the on-chain
component.

Developer Response The developers now return Ok(false) from
determine_tournament_participation when the proposers are the same, or there is no
divergence point.

© 2025 Veridise Inc. Veridise Audit Report: Kailua Protocol

26

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

Contents

4.1.10 V-KLA-VUL-010: Malicious duplicate game can block proposer progress

High seces
LosieEz: Foed
bin/cli/src/propose.rs
propose
T1ebas

When constructing a new dispute game, the following special logic is needed to compute a
"duplication counter" that acts as a nonce to avoid conflict with previously deployed games

with the same information.

let unique_extra_data = loop {
// compute extra data with block number, parent factory index, and blob hash
let extra_data = [
proposed_block_number.abi_encode_packed(),
canonical_tip.index.abi_encode_packed(),
dupe_counter.abi_encode_packed(),
]
.concat();
// check if proposal exists
let dupe_game_address = dispute_game_factory
.games (
KAILUA_GAME_TYPE,
proposed_output_root,
Bytes::from(extra_data.clone()),
)
.stall()
.await
.proxy_;
if dupe_game_address.is_zero() {
// proposal was not made before using this dupe counter
break Some(extra_data);
}
// fetch proposal from local data
let dupe_game_index: u64 = KailuaTournament::new(dupe_game_address, &
proposer_provider)
.gameIndex()
.stall()
.await
._0
-to();
let Some(dupe_proposal) = kailua_db.get_local_proposal(&dupe_game_index) else {
// we need to fetch this proposal’s data
break None;
b
// check if proposal was made incorrectly or by an already eliminated player
if dupe_proposal.is_correct().unwrap_or_default()
&& !'kailua_db.was_proposer_eliminated_before(&dupe_proposal)
{
break None;

}

// increment counter

© 2025 Veridise Inc. Veridise Audit Report: Kailua Protocol

27

41
42

Contents

dupe_counter += 1;

}

Snippet 4.18: Snippet from propose()

This logic works by iteratively incrementing the dupe_counter starting from 0 until no duplicate
is found. However, you will notice two cases with break None that can stop this iteration before
finding such a duplication counter. These capture the case when the correct proposal was
already submitted (by a non-eliminated player) so we simply need to wait to process that
correct proposal. However, these cases (in particular, the first case) can lead to trouble.

The problem here is that not all proposals are saved to the local database and thus the call
kailua_db.get_local_proposal(&dupe_game_index) may always return None even after the
relevant duplicate proposal is processed.

Illuminating Example To better understand, consider the following example. Suppose Alice
is malicious and wants to break the proposer. She first submits an incorrect proposal and then
immediately thereafter submits the correct proposal. Because the "contender" for the second
proposal has the same proposer, the function determine_tournament_participation in the
database logic will not save the second proposal to the database. However, because it is correct
and thus uses the same arguments to the dispute game factory as the proposer will try, as long
as they used the duplication counter 6, it will block the correct proposal from being submitted
by the proposer.

Impact This allows users to block proposer progress and could allow them to corrupt the
chain without manual intervention.

Recommendation Ensure that the proposer can always make progress, even in the presence
of duplicate proposals.

Developer Response The developers have added an extra check that will break if the game
index has not been processed yet in the database. Otherwise, we only break if the duplicate
proposal is stored in the database, is correct, and has a previously un-eliminated proposer. This
handles the issue as proposals which were skipped no longer block progress to considering
new duplication counters.

© 2025 Veridise Inc. Veridise Audit Report: Kailua Protocol

28

v A W N =

Contents

4.1.11 V-KLA-VUL-011: Proposal with skipped parent crashes proposer

High 6e2ces
Logic Error Fixed
bin/cli/src/db/mod.rs
determine_correctness
flc7ed?

In determine_correctness, when determining the correctness of a given proposal, the code first

fetches information about the proposal’s parent and checks if the parent is correct via the
following code.

let is_parent_correct = self
.get_local_proposal(&proposal.parent)
.expect("Attempted to process child before registering parent.")
.is_correct()

.expect("Attempted to process child before deciding parent correctness");

Snippet 4.19: Snippet from determine_correctness()

This logic first attempts to fetch the parent from the local database and then checks if that
parent is correct via the is_correct() call. The issue here is the first call to get_local_proposal
and the subsequent expect which will panic if the proposal’s parent is not found. It is possible
for this to happen as some proposals are not added to the local database, such as proposals
whose contender has the same proposer. For these proposals, they will not be saved to the local
database but there can be a subsequent proposal that chooses one of these "ignored" proposals
as a parent.

Impact If this case occurs, proposers trying to process that proposal will crash.

Recommendation Appropriately account for the possibility of a proposal with a parent that
was ignored and is thus not in the local database.

Developer Response The developers now interpret missing parent’s as a false value in both
determine_correctness() and determine_tournament_participation().

© 2025 Veridise Inc. Veridise Audit Report: Kailua Protocol

29

o U W N

Contents

4.1.12 V-KLA-VUL-012: Validators blocked from submitting valid proofs due to
inconsistency in child index accounting

Severity [@gif:sl 6e2ce8f
§84L8 Logic Error Fixed

File(s) bin/cli/src/db/mod.rs
Location(s) determine_tournament_participation
Confirmed Fix At flc7e42

In determine_tournament_participation, a child is appended to a proposal’s parent only if they
pass certain checks, such as that they are not proposed by the current contender and that their
proposer has not already been eliminated. However, this is not consistent with on-chain logic,
where these proposals are still appended as children but are just skipped in the proof. This
inconsistency means that the following code in the validator can return the wrong child indices
in cases when proposals are skipped.

let u_index = proposal_parent

.child_index(contender_index)

.expect("Could not look up contender’s index in parent tournament");
let v_index = proposal_parent

.child_index(proposal.index)

.expect("Could not look up contender’s index in parent tournament");

Snippet 4.20: Snippet from handle_proposals ()

These indices are passed directly to the prove function on-chain which is used to know which
two proposals to compare. Because the indices are inconsistent with those on-chain, the call
will fail despite having an otherwise valid proof.

Impact This can cause validators to be unable to submit valid proofs in relatively common
scenarios. Someone can even maliciously abuse this to ensure that validators always fail.

Recommendation Ensure on and off chain accounting of child indices are consistent.

Developer Response The developers now append the child in the database, as long as it has a
parent.

© 2025 Veridise Inc. Veridise Audit Report: Kailua Protocol

30

A W N R

Contents

4.1.13 V-KLA-VUL-013: Off-chain conversion to field elements is incorrect

High 6e2ces
Logic Error Fixed
crates/common/src/blobs.rs
hash_to_fe
5386e1d

V-KLA-VUL-002 reported an issue with the on-chain contracts where the conversion of values
to field elements was incorrect and could lead to exploitable conflicts. The same issue occurs in
the off-chain component of the protocol, where the same logic is duplicated in the following
function

pub fn hash_to_fe(mut hash: B256) -> B256 {
hash.0[0] &= u8::MAX >> 2;
hash

-

Snippet 4.21: Implementation of hash_to_fe

Impact This function is used in both the proposer and validator, which means at times both
of these may incorrectly encode values as field elements. This incorrect encoding can lead to
crashes and possible conflicts.

Recommendation Fix the implementation of hash_to_fe to appropriately compute the value
mod the prime.

Developer Response The developers added the appropriate computation.

© 2025 Veridise Inc. Veridise Audit Report: Kailua Protocol

31

Contents

4.1.14 V-KLA-VUL-014: Validators skip submitting proofs on error

Medium bedcest

Logic Error Addressed and Partially Verified
bin/cli/src/validate.rs

handle_proposals

871eb3

The function handle_proposals is intended to process submitted proposals, create proofs of
contender/proposal pairs, and submit those proofs on-chain. This loop is important in that it
allows tournaments to progress and ultimately proposals of blocks to be resolved. The function
works by processing new proposals as they are submitted on-chain, detecting when proofs are
needed, constructing those proofs, and submitting them. One important aspect that is not

considered are failed proof submissions. In particular, each proof submission is only attempted
once - if anything goes wrong, the validator simply skips that proof and continues on. For
example, a proof may be correct but a connection issue with the on-chain Kailua contract may
fail; in this case, the validator would simply skip this proof. As a result, to make progress
on-chain, another validator would need to process the proof or a proof would need to be
submitted manually.

Impact This can result in the chain getting stuck until either another validator or a manual
user provide a proof to progress a tournament.

Recommendation Add some retrying logic for failure cases in the validator.

Developer Response The developers have introduced a queue where proposals-to-be-
submitted are stored. Proposals are added back to this queue on failure enabling retrying of
failed proposal submissions.

This fix solves the direct issue raise by the auditors. However, the Veridise team also notes
that this change was made alongside a number of functional changes to the logic that could
introduce other issues. Veridise strongly recommends to developers that the new logic be
audited in its entirety to ensure no new or related issues were introduced and has thus marked
the issue as "addressed and partially verified".

© 2025 Veridise Inc. Veridise Audit Report: Kailua Protocol

32

Contents

4.1.15 V-KLA-VUL-015: Insecure key management

Medium bedcest

Authorization Addressed and Partially Verified
bin/cli/src/proposer.rs, bin/cli/src/validator.rs

N/A

Confirmed Fix At https://github.com/risc0/kailua/pull/21

Both the proposer and validator store a private key in plaintext as part of their respective
argument structs. Storing private keys in plaintext is dangerous and can potentially risk stolen
keys.

Impact Stolen private keys can potentially be very bad depending on what those keys are
used for. In this case, it appears the private keys are intended to have access to funds - thus
stolen keys could lead to lost funds.

Recommendation We recommend not storing keys in plaintext. Instead, rely on safer industrial
solutions for key management.

Full validation of operational security practices is beyond the scope of this review. Users of the
protocol should ensure they are confident that the operators of privileged keys are following
best practices such as:

1. Never storing a protocol key in plaintext, on a regularly used phone, laptop, or device, or
relying on a custom solution for key management.

2. Using separate keys for each separate function.

3. Storing multi-sig keys in a diverse set of key management software/hardware services
and geographic locations.

4. Enabling 2FA for key management accounts. SMS should not be used for 2FA, nor should

any account which uses SMS for 2FA. Authentication apps or hardware are preferred.

Validating that no party has control over multiple multi-sig keys.

Performing regularly scheduled key rotations for high-frequency operations.

Securely storing physical, non-digital backups for critical keys.

Actively monitoring for unexpected invocation of critical operations and/or deployed

attack contracts.

9. Regularly drilling responses to situations requiring emergency response such as paus-
ing/unpausing.

®© N

Developer Response The developers have added additional options for using AWS or GCP
key management. They did still keep the option to provide keys as plaintext. The Veridise team
suggests users do not use the plaintext option and instead always opt for using either AWS or
GCP.

The Veridise team also notes that this change was made alongside a number of functional changes
to the logic that could introduce other issues. Veridise strongly recommends to developers that
the new logic be audited in its entirety to ensure no new or related issues were introduced and
has thus marked the issue as "addressed and partially verified".

© 2025 Veridise Inc. Veridise Audit Report: Kailua Protocol

https://github.com/risc0/kailua/pull/21

33

Contents

4.1.16 V-KLA-VUL-016: Not all fields included in rollup hash

Medium 6e2ces
Logic Error Fixed
crates/common/src/client.rs
config_hash
bd76b76

The function config_hash is used to hash the configuration options chosen for the rollup that is
included in the journal and is thus used to ensure consistency with on-chain contracts. The
function essentially takes all of the configuration options, converts them to bytes, concatenates
them together, and hashes them. However, the following fields are missing from the
computation:

e From the system config, the fields eip1559_denominator and eip1559_elasticity
e From the rollup config, the fields genesis.12_time and isthmus_time

Impact If these fields can change the rollup behavior in meaningful ways, this could mean
two different rollups would have the same hash. This could lead to proofs for one rollup being
incorrectly used for a different rollup.

Recommendation Add all relevant fields to the computation of the hash.

Additionally, we also recommend the use of a domain separator between entries in the hash to
avoid conflicts. We do not believe this is currently an issue as all elements included in the hash
are of fixed length but suggest this to avoid possible issues in the future if this changes.

Developer Response The developers have added the missing fields to the calculation of the
hash.

© 2025 Veridise Inc. Veridise Audit Report: Kailua Protocol

34

Contents

4.1.17 V-KLA-VUL-017: Missing conversion to field element on output comparison

Low 6e2ces
Logic Error Fixed
KailuaTournament.sol
prove
5386¢1d

In the prove function, the following check is used to ensure that proofs are only submitted
where the opponent is asserting some difference with the contender.

if (proposedOutput[0] == proposedOutput[1l]) {
revert NoConflict();

-

Snippet 4.22: Snippet from prove

This check fails to first convert the proposed outputs to field elements using the hashToFe
function as is used later in the function.

Impact This can allow this check to be passed if the proposed outputs are different before
conversion to a field element but the same after (for instance the values 0 and p). At the
moment, this is a low severity issue because the contender is always assumed to be the first
output, their output is checked first, and if it matches, they are simply chosen as the winner.
Thus, a challenger cannot use this to choose the correct output plus p and get a valid proposal
rejected. However, this (1) allows what should be invalid proofs to be processed and posted and
(2) could introduce serious bugs if the logic changes even slightly (e.g., if the contender could
ever be the second competitor in the proof).

Recommendation Convert both outputs to field elements before comparing.

It should be noted that fixing V-KLA-VUL-002 will not resolve this issue.

Developer Response The developers added a fix which enforces that the proposed output
values are within the field if the proposals differ on the last element. Otherwise, this is enforced

in the call to verifyIntermediateOutput which uses the KZG precompile to perform this
check.

© 2025 Veridise Inc. Veridise Audit Report: Kailua Protocol

35

Contents

4.1.18 V-KLA-VUL-018: Network issues can crash validator

Low be2cess

Denial of Service Addressed and Partially Verified
bin/cli/src/validate.rs

handle_proposals

Confirmed Fix At https://github.com/risc0/kailua/pull/21

In the validator, if the handle_proposals function ever returns an error, this will cause the
validator to crash. In the main loop, errors can be returned in two different cases: whenever
loading proposals fails and whenever requesting a proof fails. These can fail due to simple
network failures when communication with a node fails, meaning any network disruption
could cause a validator to crash.

Impact As mentioned above, network failures can crash validators.

Recommendation Handle network failures without crashing the validator.

Developer Response The developers have added in retry logic to avoid crashing for a number
of the possible errors that can arise during normal functioning of a validator.

While these fixes address that heart of the issue raised by auditors, the Veridise team also
notes that this change was made alongside a number of functional changes to the logic that
could introduce other issues. Veridise strongly recommends to developers that the new logic be
audited in its entirety to ensure no new or related issues were introduced and has thus marked
the issue as "addressed and partially verified".

© 2025 Veridise Inc. Veridise Audit Report: Kailua Protocol

https://github.com/risc0/kailua/pull/21

36

© 00 N O U B W N =

10
11

12
13
14

Contents

4.1.19 V-KLA-VUL-019: Proofs cannot be submitted for identical proposals with
differing last elements

Syl Warning 6e2ce8f

g4l Logic Error Addressed and Partially Verified
File(s) KailuaTournament.sol
Location(s) prove
Confirmed Fix At 5586eld

The final blob element for a given proposal is simply presumed to be the root claim. As such,
for the on-chain prove logic, the final blob element for competing proposals are not checked,
with the exception of the following logic, which is used to check that, in the case that the
differing blob element is at the last possible index, all the blobs are simply identical (with
presumably the only difference being the root claim).

// Find the divergent blob index
uint256 divergentBlobIndex = KailualLib.blobIndex(uvo[2]);
if (uvo[2] == PROPOSAL_BLOCK_COUNT - 1) {
// If the only difference is the root claim, require all blobs to be equal.
divergentBlobIndex = PROPOSAL_BLOBS;
}
// Ensure blob hashes are equal until divergence
for (uint256 i = 0; i < divergentBlobIndex; i++) {
if (childContracts[@].proposalBlobHashes(i).raw() !'= childContracts[1].
proposalBlobHashes(i).raw()) {
revert BlobHashMismatch(
childContracts[0].proposalBlobHashes(i).raw(), childContracts[1].
proposalBlobHashes(i).raw()
);
}
}

Snippet 4.23: Snippet from prove()

This leaves some strange behavior for the final blob element. Someone could submit a challenge
that is entirely valid (modulo the last blob elements up until the end of the last blob which are
unused) and be unable to submit their challenge.

Impact The impact is relatively minimal as the challenger need only update their last blob
elements to match the contender’s last blob element values. However, this is an annoyance for
users who likely do not want to do this.

Recommendation Remove the special handling for checking when the difference is on the final
root and instead enforce a canonical padding that must be used for all unused blob elements.

Disclosure This issue was found by developers during the early part of the audit and was
shared with the audit team. The team verified that this is an issue and included it in the report
for completeness.

© 2025 Veridise Inc. Veridise Audit Report: Kailua Protocol

37 Contents

Developer Response The developers no longer change the divergentBlobIndex in the special
case when uvo[2] is equal to the root claim, and thus the special case of differing final elements
is no longer relevant for this particular check.

However, the Veridise team also notes that this change was made alongside a number of
functional changes to the logic that could introduce other issues. For instance, there is now an
additional function proveTrailFault which allows disproving of proposals that agree on the
root claim but disagree on the final intermediate output - introduction of this function could
introduce other vulnerabilities, as it is an entirely new interface for providing proofs. Veridise
strongly recommends to developers that the new logic be audited in its entirety to ensure no
new or related issues were introduced and has thus marked the issue as "addressed and
partially verified".

© 2025 Veridise Inc. Veridise Audit Report: Kailua Protocol

38 Contents

4.1.20 V-KLA-VUL-020: Elimination round calculation off-chain can become
inconsistent with on-chain

Syl Warning 6e2ce8f
8428 Logic Error Fixed

File(s) bin/cli/src/db/treasury.rs
Location(s) fetch_elimination_round
Confirmed Fix At https://github.com/risc0/kailua/pull/21

The function fetch_elimination_round is intended to get the elimination round for a given
address. The implementation is given below.

1| let instance = self.treasury_contract_instance(provider);

2|let round = match self.elimination_round.entry(address) {

3 Entry::Vacant(entry) => {

4 let round = instance.eliminationRound(address).stall().await._0.to();
5 xentry.insert(round)

6 }

7 Entry::0ccupied(entry) => *xentry.get(),

8|}

9 [0k (round)

Snippet 4.24: Implementation of fetch_elimination_round

As shown, the first time the elimination round is fetched, it fetches the information from
on-chain and saves it into the the local elimination_round mapping. However, thereafter any
time the elimination round for an address is fetched, it uses the stored value instead of
querying the on-chain instance again.

This will not always return a consistent elimination round for an address as on-chain because
the elimination round of an address can change over time. As a result, the stored local version
in elimination_round can become out-of-date.

Impact This function is currently not used anywhere, so the impact of this is minimal. However,
if one did use this function, substantial bugs could potentially occur due to the inconsistency
between on-and-off-chain tracking of eliminations.

Recommendation Fix the logic to fetch information from chain or simply remove the function
as it is unused.

Developer Response The developers deleted the function.

© 2025 Veridise Inc. Veridise Audit Report: Kailua Protocol

https://github.com/risc0/kailua/pull/21

39

0 N OO U~ W N

Contents

4.1.21 V-KLA-VUL-021: KZG precompile field modulus return not checked

Warning be2eesf

Logic Error Fixed
crates/contracts/src/KailualLib.sol
verifyKZGBlobProof

fAc7es2

The following precompile call is made in the code.

bytes memory kzgCallData = abi.encodePacked(
versionedHash, // proposalBlobHash().raw(),
root0fUnity,
hashToFe(value),
blobCommitment,
proof

)

(success,) = KZG.call(kzgCallData);

Snippet 4.25: Snippet from verifyKzGBlobProof ()

The return value of the call which is ignored returns the field modulus. It is possibly this could
change in the future, so it is best practice to check the value.

Impact If the modulus changes, the computation could be incorrect unexpectedly and without
clear explanation.

Recommendation Add a check on the field modulus returning by the call.

Developer Response The developers now compare the precompile response to the stored
FIELD_ELEMENTS_PER BLOB and BLS_MODULUS values.

© 2025 Veridise Inc. Veridise Audit Report: Kailua Protocol

40

© 0 N O U~ W N

N NN NN NN NN B B B 2 2 [2 2 B 2 @2
0 N O U A W N F O O 0N O U W N R OO

Contents

4.1.22 V-KLA-VUL-022: Fetching blob returns default in the case of no match

Waring be2ces
Logic Error Fixed
bin/host/src/lib.rs
get_blob_fetch_request
ficed2

The function get_blob_fetch_request is used to retrieve information about a blob and block
matching the provided hashes. Below is the implementation of the function.

let block = 11_provider
.get_block_by_hash(block_hash, BlockTransactionsKind::Full)
.await?
.expect("Failed to fetch block {block_hash}.");
let mut blob_index = 0;
for blob in block.transactions.into_transactions().flat_map(|tx| {
tx.blob_versioned_hashes()
.map(|h| h.to_vec())
.unwrap_or_default()
A
if blob == blob_hash {
break;
}

blob_index += 1;

-

Ok (BlobFetchRequest {
block_ref: BlockInfo {
hash: block.header.hash,
number: block.header.number,
parent_hash: block.header.parent_hash,
timestamp: block.header.timestamp,

+
blob_hash: IndexedBlobHash {
index: blob_index,
hash: blob_hash,
+
b

Snippet 4.26: Implementation of get_blob_fetch_request

As shown, the function iterates through transactions in the block matching the provided hash,
and breaks when a matching hash is found. However, if the hash is not found, information
about the header is still returned (even though it didn’t contain a transaction with the desired
blob) and it returns an incorrect blob hash.

Impact Currently this is only used to construct precondition validation data for the host. If
incorrect data is provided, this could cause proof generation to fail. However, if in the future
this logic is used elsewhere, it could lead to security vulnerabilities.

© 2025 Veridise Inc. Veridise Audit Report: Kailua Protocol

41 Contents

Recommendation Error in the case that no match is found.

Developer Response The developers now return an Err when a blob is not found.

© 2025 Veridise Inc. Veridise Audit Report: Kailua Protocol

42

Contents

4.1.23 V-KLA-VUL-023: Unused program constructs

Info 6e2ces
Maintainability Fixed
See issue description
See issue description
8516099

Description The following program constructs are unused:
® crates/contracts/foundry/src/KailualLib.sol

- error ClockExpired

- error NotProven

- error UnchallengedGame

- error InvalidAnchoredGame
- error BlockNumberMismatch

® bin/cli/src/

- db/
* config.rs

- Config.game field

- Config.verifier field
- Config.image_id field
- Config.game_type field
- Config.factory field

* mod.rs

- pub enum ProofStatus
- pub fn is_proposer_eliminated

+ treasury.rs
- pub async fn fetch_elimination_round
- propose.rs
* function propose
- The variable proposal is declared twice.

e bin/client/src/

- function run_boundless_client

* _journal return from call boundless_client.wait_for_request_fulfillment is
never used.

Impact These constructs may become out of sync with the rest of the project, leading to errors
if used in the future.

Developer Response The developers have incorporated most suggestions, and for those that
they did not, they have provided reasonable justification for not incorporating.

© 2025 Veridise Inc. Veridise Audit Report: Kailua Protocol

43 Contents

4.1.24 V-KLA-VUL-024: Small code suggestions

Info be2ces
Maintainability Fixed
See issue description
See issue description
27deck?

Description In the following locations, the auditors identified the following places in the code
where small changes are suggested:

® crates/contracts/foundry/src:

- KailualLib.sol:

* blobPosition():

- This function computes a number that is guaranteed to be in the range
[0, 4095] but returns a uint256. This function can be updated to return a
uint32 instead.

* modExp():

- This computes the value root *x x mod p where x is the input to the
function and both root and p are constants defined in the file - I have
changed the names of these for clarity. However, in the actual function, the
input is instead named base which is misleading given that it is used as the
exponent in the calculation. We suggest renaming this variable to avoid
confusion.

- It is technically possible that calls to the MOD_EXP precompile could revert. It
is likely the only cause of a revert is running of out of gas. However, to avoid
all risk, we would suggest adding in a check that the call did not revert.

+ interface IKailuaTreasury:

- The functions eliminationRound and proposer0f can be defined as view
functions.

- KailuaTournament.sol:

+ Most of the immutable variables are made internal and provided separate

getters. These would have gettters provided automatically by making them
public.

* prove():

- There is a remaining TODO open for the case where both the contender and
opponent lose.

e bin/cli/src:
- validate.rs:
* handle_proofs():

- This function contains the following logic applicable only to dev mode. In

most places, the feature #[cfg(feature = "devnet")] is used for these, but
not here.

© 2025 Veridise Inc. Veridise Audit Report: Kailua Protocol

44 Contents

if is_dev_mode() {
kailua_host_command.env("RISCO_DEV_MODE", "1");

N =

- db/:
* treasury.rs:
- fetch_elimination_round():

e Calculation of instance can be moved inside of the Vacant entry case as it
is only used there.

- fetch_proposes():
e Same note as for fetch_elimination_round.
* proposal.rs:
- fetch_parent_tournament_survivor_status():

e The expression survivor.map(|survivor| survivor == self.contract)
is computed twice unnecessarily.

® crates/common/src:

- blobs.rs:
* get_blobs():

- This continues to add elements to the vector after a match is found. This
means there could be duplicate elements for a single blob hash, if the
blob_hashes passed in contained duplicates. This is not a security issue as
the only place it is used simply fetches a single hash and fetches the first
element of the vector returned. However, this could lead to bugs in the
future if used differently. We suggest continuing onto the next hash after a
match is found to avoid duplicates.

- client.rs:
* validate_precondition():

- The computation of agreed_12_output_root can move out of the loop.

Impact These minor errors may lead to future developer confusion.

Developer Response The developers have incorporated most suggestions, and for those that
they did not, they have provided reasonable justification for not incorporating.

© 2025 Veridise Inc. Veridise Audit Report: Kailua Protocol

¥ Glossary

Denial-of-Service An attack in which the liveliness or ability to use a service is hindered . 5

optimistic rollup A rollup in which the state transition of the rollup is posted "optimistically"
to the base network. A system involving stake for resolving disputes during a challenge
period is required for economic security guarantees surrounding finalization . 1

reentrancy A vulnerability in which a smart contract hands off control flow to an unknown
party while in an intermediate state, allowing the external party to take advantage of the
situation. 5

rollup A blockchain that extends the capabilities of an underlying base network, such as higher
throughput, while inheriting specific security guarantees from the base network. Rollups
contain smart contracts on the base network that attest the state transitions of the rollup
are valid . 1, 45

smart contract A self-executing contract with the terms directly written into code. Hosted on a
blockchain, it automatically enforces and executes the terms of an agreement between
buyer and seller. Smart contracts are transparent, tamper-proof, and eliminate the need
for intermediaries, making transactions more efficient and secure. 1, 45

zero-knowledge circuit A cryptographic construct that allows a prover to demonstrate to a
verifier that a certain statement is true, without revealing any specific information about
the statement itself. See https://en.wikipedia.org/wiki/Zero-knowledge_proof for
more. 45

zkVM A general-purpose zero-knowledge circuit that implements proving the execution of a
virtual machine. This enables general purpose programs to prove their execution to outside
observers, without the manual constraint writing usually associated with zero-knowledge
circuit development . 1

Veridise Audit Report: Kailua Protocol © 2025 Veridise Inc.

https://en.wikipedia.org/wiki/Zero-knowledge_proof

	Veridise Auditing Report
	Contents
	Executive Summary
	Project Dashboard
	Security Assessment Goals and Scope
	Security Assessment Goals

	Security Assessment Goals
	Security Assessment Methodology & Scope

	Security Assessment Methodology & Scope
	Classification of Vulnerabilities

	Classification of Vulnerabilities
	Vulnerability Report
	Detailed Description of Issues

	Detailed Description of Issues
	V-KLA-VUL-001: Correct proposal can be rejected when disputed root is after the last block
	V-KLA-VUL-002: On-chain conversion to field elements is incorrect
	V-KLA-VUL-003: Reentrancy allows unchallengable proposal
	V-KLA-VUL-004: Malicious payout recipient causes DoS
	V-KLA-VUL-005: Early exit in proof generation enables fault proof against an honest proposal
	V-KLA-VUL-006: Unchallengable proposal arises from out-of-order eliminations
	V-KLA-VUL-007: Bonds cannot be recovered for honest actors
	V-KLA-VUL-008: Elimination inconsistency off-chain leads to blocked proposer
	V-KLA-VUL-009: Matches between duplicate proposals off-chain leads to crashed validator
	V-KLA-VUL-010: Malicious duplicate game can block proposer progress
	V-KLA-VUL-011: Proposal with skipped parent crashes proposer
	V-KLA-VUL-012: Validators blocked from submitting valid proofs due to inconsistency in child index accounting
	V-KLA-VUL-013: Off-chain conversion to field elements is incorrect
	V-KLA-VUL-014: Validators skip submitting proofs on error
	V-KLA-VUL-015: Insecure key management
	V-KLA-VUL-016: Not all fields included in rollup hash
	V-KLA-VUL-017: Missing conversion to field element on output comparison
	V-KLA-VUL-018: Network issues can crash validator
	V-KLA-VUL-019: Proofs cannot be submitted for identical proposals with differing last elements
	V-KLA-VUL-020: Elimination round calculation off-chain can become inconsistent with on-chain
	V-KLA-VUL-021: KZG precompile field modulus return not checked
	V-KLA-VUL-022: Fetching blob returns default in the case of no match
	V-KLA-VUL-023: Unused program constructs
	V-KLA-VUL-024: Small code suggestions
	Glossary

