¥ Veridise
Auditing Report

Hardening Blockchain Security with Formal Methods

Veridise Inc.
May 22, 2025



» Prepared For:

RISC Zero
https://risczero.com/

» Prepared By:
Benjamin Mariano

Tyler Diamond
Victor Faltings

» Contact Us:

contact@veridise.com

» Version History:

May 22, 2025 V2
May 19, 2025 Vi

© 2025 Veridise Inc. All Rights Reserved.


https://risczero.com/
contact@veridise.com

Contents

Contents 1ii
1 Executive Summary 1
2 Project Dashboard 3
3 Security Assessment Goals and Scope 4
3.1 Security AssessmentGoals . . . . .. ... .. o oL o oL 4
3.2 Security Assessment Methodology & Scope . . . ... ... ... ... ... .. 4
3.3 Classification of Vulnerabilities . . . . . ... ... ... ... ........... 5
4 Trust Model 6
41 Operational Assumptions. . . . ... .. ... ... ... . o 6
411 Off-chain Component Assumptions . . . . .. ... ... ......... 6
42 PrivilegedRoles. . . . . .. ... L 7
5 Vulnerability Report 8
51 Detailed Descriptionof Issues . . . . . ... ... ... ... ... ... .. .. 9
511 V-KLA-VUL-001: Duplicate proposal bonds arelost . . . . ... ... .. 9
512 V-KLA-VUL-002: Late validity proof allows eliminating a resolved proposal 10

51.3 V-KLA-VUL-003: Bonds for proposals made after challenge duration are
lost . . . 13
514 V-KLA-VUL-004: Proofs can be submitted after resolution . . . ... .. 14
515 V-KLA-VUL-005: Unused program constructs . . . . .. ... ...... 15
51.6 V-KLA-VUL-006: Typos, incorrect comments, and small code suggestions 16
Glossary 17

Veridise Audit Report: Kailua Protocol © 2025 Veridise Inc.



¥ Executive Summary

From May 5, 2025 to May 15, 2025, RISC Zero engaged Veridise to conduct a security assessment
of their Kailua Protocol. The Kailua Protocol enables OP-stack optimistic rollups to utilize
zero-knowledge proofs for resolving disputes between proposed output roots. Compared to
the earlier version, which Veridise has audited previously*, the new version addresses issues
brought up in the initial audit and introduces functionality of utilizing validity proofs to prove
the legitimacy of a proposal. This report only addresses the smart contract implementation, not
the off-chain zero-knowledge components. Veridise conducted the assessment over 6 person-
weeks, with 3 security analysts reviewing the project over 2 weeks on commit 7eb9869. The
review strategy involved a tool-assisted analysis of the program source code performed by
Veridise security analysts as well as thorough code review.

Project Summary. The security assessment covered the smart contracts involved in the Kailua
Protocol. These contracts are responsible for storing the proposals of state transitions of the
given rollup, and implement processes for resolving disputes between proposals.

Notably, there are three methods for determining the legitimacy of proposals:

1. Output Fault: A proposal is proven in zero-knowledge to contain an illegitimate output
root from the OP-stack L2 state transition, and should therefore be eliminated.

2. Null Fault: A proposal is found to have an improperly formatted sequence of output
roots, and should therefore be eliminated.

3. Validity Proven: A proposal is proven in zero-knowledge to contain the correct state
transitions for its final output root, and therefore should be marked as the correct proposal
for finalization.

These three methods, along with a process for eliminating disputing proposals, implement the
core functionality of the smart contracts.

Code Assessment. The Kailua Protocol developers provided the source code of the Kailua
Protocol contracts for the code review. The source code appears to be mostly original code written
by the Kailua Protocol developers. It contains some documentation in the form of READMEs,
a gitbook™ and documentation comments on functions and storage variables. To facilitate the
Veridise security analysts’ understanding of the code, the Kailua Protocol developers met with
the Veridise security analysts and quickly answered any questions that arose.

The source code contained a test suite, which the Veridise security analysts noted contained both
positive and negative tests and achieved 100% coverage of the smart contracts under review.

* The previous audit report, if it is publicly available, can be found on Veridise’s website at https://veridise.com/
audits/
t https://risc0.github.io/kailua/

Veridise Audit Report: Kailua Protocol © 2025 Veridise Inc.


https://veridise.com/audits/
https://veridise.com/audits/
https://risc0.github.io/kailua/

Contents

Summary of Issues Detected. The security assessment uncovered 6 issues. No high or critical
severity issues were found. Veridise analysts identified 2 medium-severity issues, including
eliminating a resolved proposal (V-KLA-VUL-002) and losing bonds for duplicate proposals
(V-KLA-VUL-001). Analysts also identified 1 low-severity issue, 2 warnings, and 1 informational
finding. RISC Zero has fixed all of the identified issues.

Disclaimer. We hope that this report is informative but provide no warranty of any kind,
explicit or implied. The contents of this report should not be construed as a complete guarantee
that the system is secure in all dimensions. In no event shall Veridise or any of its employees be
liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise,
arising from, out of or in connection with the results reported here.

© 2025 Veridise Inc. Veridise Audit Report: Kailua Protocol



2 \Z Project Dashboard

Table 2.1: Application Summary.

Platform

Kailua Protocol 7eb9869 Solidity Ethereum

Table 2.2: Engagement Summary.

Method Consultants Engaged Level of Effort

May 5-May 15,2025  Manual & Tools 6 person-weeks

Table 2.3: Vulnerability Summary.

Adnovicized

Critical-Severity Issues
High-Severity Issues
Medium-Severity Issues
Low-Severity Issues
Warning-Severity Issues
Informational-Severity Issues
TOTAL

A=, N = DNO
A= N = DNO
A= N = DNO

Table 2.4: Category Breakdown.

Logic Error 4
Maintainability 2

Veridise Audit Report: Kailua Protocol © 2025 Veridise Inc.



'\g Security Assessment Goals and Scope

3.1 Security Assessment Goals

The engagement was scoped to provide a security assessment of Kailua Protocol’s smart
contracts. During the assessment, the security analysts aimed to answer questions such as:

Can invalid proposals become resolved?
Are zero-knowledge proofs correctly validated?
Do the proving functions implement their intended functionality?

vVvyVvyy

Can a proposer ever be double eliminated, and therefore cause a Denial-of-Service in the
protocol?

Can validity proofs be submitted as fault proofs or vice versa?

Can a user steal payment funds from an honest prover?

Can any of the previously reported issues be triggered?

vvyVvyy

Is the protocol subject to common smart contract bugs such as reentrancy attacks?

3.2 Security Assessment Methodology & Scope

Security Assessment Methodology. To address the questions above, the security assessment
involved a combination of human experts and automated program analysis & testing tools. In
particular, the security assessment was conducted with the aid of the following techniques:

» Static analysis. To identify potential common vulnerabilities, security analysts leveraged
Veridise’s custom smart contract analysis tool Vanguard, as well as the open-source tool
Slither. These tools are designed to find instances of common smart contract vulnerabilities,
such as reentrancy and uninitialized variables.

Scope. The scope of this security assessment is limited to the four Solidity files defined in
the crates/contracts/foundry/src folder of the source code provided by the Kailua Protocol
developers. It should be noted that the files in crates/contracts/foundry/src/vendor contain
imported code and were not in the scope of the audit. Additionally, this version of the review
did not consider any of the off-chain components.

Methodology. Veridise security analysts reviewed the reports of previous audits for Kailua
Protocol, inspected the provided tests, and read the Kailua Protocol documentation. They then
began a review of the code assisted by static analyzers.

During the security assessment, the Veridise security analysts met with the Kailua Protocol
developers to ask questions about the code and share their findings.

Veridise Audit Report: Kailua Protocol © 2025 Veridise Inc.



Contents

3.3 Classification of Vulnerabilities

When Veridise security analysts discover a possible security vulnerability, they must estimate
its severity by weighing its potential impact against the likelihood that a problem will arise.

The severity of a vulnerability is evaluated according to the Table 3.1.

Table 3.1: Severity Breakdown.

Somewhat Bad Bad Very Bad Protocol Breaking

Not Likely SR W RE M W Medium
Likely [ WA Low. |  Medium [N High S
Very Likely [ oWe o Medium [ g I

The likelihood of a vulnerability is evaluated according to the Table 3.2.

Table 3.2: Likelihood Breakdown

Not Likely | A small set of users must make a specific mistake
Requires a complex series of steps by almost any user(s)
Likely | - OR -

Requires a small set of users to perform an action

Very Likely | Can be easily performed by almost anyone

The impact of a vulnerability is evaluated according to the Table 3.3:
Table 3.3: Impact Breakdown

Somewhat Bad | Inconveniences a small number of users and can be fixed by the user
Affects a large number of people and can be fixed by the user

Bad | -OR-

Affects a very small number of people and requires aid to fix

Affects a large number of people and requires aid to fix

Very Bad | -OR -

Disrupts the intended behavior of the protocol for a small group of
users through no fault of their own

Protocol Breaking | Disrupts the intended behavior of the protocol for a large group of
users through no fault of their own

© 2025 Veridise Inc. Veridise Audit Report: Kailua Protocol



7 Trust Model

4.1 Operational Assumptions.

In addition to assuming that any out-of-scope components behave correctly, Veridise analysts
assumed the following properties held when modeling security for Kailua Protocol.

» The DisputeGameFactory owner will only set the implementation of the Kailua GameType
to the compilation of the version of KailuaGame.sol reviewed in this report.
» The bond in the KailuaTreasury will be set to a reasonable amount.

4.1.1 Off-chain Component Assumptions

The smart contracts in Kailua Protocol interact closely with an off-chain RISC Zero zkVM
application that is used to create both validity and fault proofs for proposals on chain. Correct
behavior of the smart contracts relies on a number of assumptions about the behaviors of the
off-chain component, so we make some of the most important of those assumptions about the
off-chain component explicit here:

» All L2 block header data used for derivation proofs are fetched from an L1 block with a
hash matching the L1 head hash in the journal.

» Thereisavalid derivation proof from the L2 block header corresponding to acceptedOutputHash

from the journal to the L2 block header corresponding to computedOutputHash also from
the journal.

» The L2 block header hash computedOutputHash in the journal has the L2 block number
claimedBlockNumber also from the journal.

» The off-chain component image ID matches the on-chain image ID.

» The off-chain rollup configuration hash matches the on-chain configuration hash.

» The off-chain specified the payout recipient in the journal as the entity which should
receive payout for the proof.

» If the precondition hash in the journal is non-zero, the number of L2 blocks in the
derivation match the expected length on-chain and the intermediate roots have a hash
matching the one provided on-chain.

» An off-chain validity proof verifies that all trailing field elements which do not correspond
to actual roots are set to zero.

» The off-chain prover will only validate a given root if the hashes provided to determine
that root are valid field elements.

We shared these assumptions with the Kailua Protocol developers, who indicated that these
assumptions should be satisfied by the off-chain component. Because there could be vulnerabil-
ities in the smart contracts if any of these assumptions are violated, we strongly recommend
that the Kailua Protocol developers independently verify that the off-chain component does in
fact satisfy these assumptions.

Veridise Audit Report: Kailua Protocol © 2025 Veridise Inc.



Contents

4.2 Privileged Roles.

Roles. This section describes in detail the specific roles present in the system, and the actions
each role is trusted to perform. The roles are grouped based on their privilege-level. Highly-
privileged roles may have a critical impact on the protocol if compromised, while limited-authority
roles have a negative, but manageable impact if compromised.

During the review, Veridise analysts assume that the role operators perform their responsibilities
as intended. Protocol exploits relying on the below roles acting outside of their privileged scope
are considered outside of scope.

» Highly-privileged roles:

* DisputeGameFactory owner can set the implementation address of dispute games, set
the participation bond required in the KailuaTreasury and set the Vanguard address
and advantage duration.

» Limited-authority roles:

* KailuaTreasury.vanguard is given a set amount of time at the beginning of each
round of dispute games, configured with the vanguardAdvantage variable, in which
they are the only proposer allowed to create a proposal.

Operational Recommendations. Highly-privileged, non-emergency operations should be
operated by a multi-sig contract or decentralized governance system.

Full validation of operational security practices is beyond the scope of this review. Users of the
protocol should ensure they are confident that the operators of privileged keys are following
best practices such as:

» Never storing a protocol key in plaintext, on a regularly used phone, laptop, or device, or
relying on a custom solution for key management.

» Using separate keys for each separate function.

» Storing multi-sig keys in a diverse set of key management software/hardware services
and geographic locations.

» Enabling 2FA for key management accounts. SMS should not be used for 2FA, nor should

any account which uses SMS for 2FA. Authentication apps or hardware are preferred.

Validating that no party has control over multiple multi-sig keys.

Performing regularly scheduled key rotations for high-frequency operations.

Securely storing physical, non-digital backups for critical keys.

Actively monitoring for unexpected invocation of critical operations and/or deployed

vvyVvVyy

attack contracts.
» Regularly drilling responses to situations requiring emergency response such as paus-
ing/unpausing.

© 2025 Veridise Inc. Veridise Audit Report: Kailua Protocol



¥ Vulnerability Report

This section presents the vulnerabilities found during the security assessment. For each issue
found, the type of the issue, its severity, location in the code base, and its current status (i.e.,
acknowledged, fixed, etc.) is specified. Table 5.1 summarizes the issues discovered:

Table 5.1: Summary of Discovered Vulnerabilities.

D P bescripion | Severity | Status

V-KLA-VUL-001 Duplicate proposal bonds are lost Medium Fixed
V-KLA-VUL-002 Late validity proof allows eliminatinga...  Medium Fixed
V-KLA-VUL-003 Bonds for proposals made after challenge. .. Low Fixed
V-KLA-VUL-004 Proofs can be submitted after resolution Warning Fixed
V-KLA-VUL-005 Unused program constructs Warning Fixed
V-KLA-VUL-006 Typos, incorrectcomments, and small code.. .. Info Fixed

Veridise Audit Report: Kailua Protocol © 2025 Veridise Inc.



v A W N =

Contents

5.1 Detailed Description of Issues

5.1.1 V-KLA-VUL-001: Duplicate proposal bonds are lost

Medium 7eb9869
Logic Error Fixed
KailuaTournament.sol
pruneChildren()

Confirmed Fix At https://github.com/risc0/kailua/pull/46

When a proposal has a duplicate signature (an attestation to the state roots of a proposal) of the
current contender, it is added to the contenderDuplicates array.

bytes32 opponentSignature = opponent.signature();
if (opponentSignature == contenderSignature) {
contenderDuplicates.push(v);
continue;

-

Snippet 5.1: Snippet from KailuaTournament.sol:pruneChildren()

If said contender eventually resolves as the correct proposal, then the duplicates are not
eliminated (as they are also correct proposals), but they are also not set to resolved. The
KailuaTreasury implements no method of claiming back the bonds of these duplicates.

Impact The bonds of duplicates proposals become stuck in the KailuaTreasury contract.
There may also be issues with claiming bonds unexpectedly with this combined with
V-KLA-VUL-002.

Recommendation Add functionality to claim duplicate proposal bonds once resolution has
occurred.

Developer Response The developers have modified KailuaTreasury.claimProposerBond() to
enable a proposer to withdraw their bond if they are not eliminated, and if the most recent
game they have proposed in is resolved. This means duplicate proposals of the correct proposal
can have their bonds reclaimed once the tournament they are in is resolved because these
proposals are not eliminated in KailuaTournament.pruneChildren() if they are duplicates of the
correct proposal.

© 2025 Veridise Inc. Veridise Audit Report: Kailua Protocol


https://github.com/risc0/kailua/pull/46

10

o U A W N

O© 00 N O U B W N =

=
(o)

Contents

5.1.2 V-KLA-VUL-002: Late validity proof allows eliminating a resolved proposal

Medium 7eb9869
Logic Error Fixed
KailuaTournament.sol
pruneChildren()

Confirmed Fix At https://github.com/risc0/kailua/pull/43/, cllab54

A KailuaGame P may be resolved in one of two ways:

1. After a period MAX_CLOCK_DURATION has expired without being challenged by another
proposal or fault proof.
2. By submitting a validity proof for P.

In the case of the first situation, an issue may arise if P is later shown to be invalid.

While a proposer cannot submit a fault proof for P after the challenge period, they can instead
submit the correct proposal C along with a validity proof of C. Both of these operations are
permitted by the treasury and tournament contracts.

As a result of the validity proof of C, the signature of P will no longer be valid according to
isviableSignature(), causing pruneChildren() to eliminate it.

function isViableSignature(bytes32 childSignature) public view returns (bool
isViableSignature_) {

if (validChildSignature !'= 0) {
isViableSignature_ = childSignature == validChildSignature;
}
/] ...
}
Snippet 5.2: Snippet from isViableSignature()
/] ...
if (!isViableSignature(contenderSignature) || isChildEliminated(contender)) {
/] ...
// Eliminate contender
if (!isChildEliminated(contender)) {
KAILUA_TREASURY.eliminate(address(contender), payoutRecipient);
}
/] ...
}
//

Snippet 5.3: Snippet from pruneChildren()

The proposal C on the other hand, can be freely resolved as it has been proven to be valid. Upon
resolution of C, both P and its proposer will be marked as eliminated (despite P already having
been resolved and potentially extended with more child proposals).

Impact As a consequence of the situation described above, both P and C will be marked as
resolved (and thus can be extended by more proposals), creating a fork in the chain.

© 2025 Veridise Inc. Veridise Audit Report: Kailua Protocol



https://github.com/risc0/kailua/pull/43/

11

© 00 N o v

10
11
12
13
14
15
16
17
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

Contents

Another dangerous effect of this is that the proposer of P may be eliminated out-of-order, which
can cause additional issues.

Proof of Concept The following test case can be added to ClaimDispute.t.sol to test for this
issue:

function test_pruneChildrenAfterAccepting() public {
vm.warp (
game.GENESIS_TIME_STAMP() + game.PROPOSAL_TIME_GAP()
+ game.PROPOSAL_OUTPUT_COUNT() * game.OUTPUT_BLOCK_SPAN() * game.L2_BLOCK_TIME
()
);

// Submit invalid proof

vm.startPrank(address (0x1));

KailuaTournament invalid = treasury.propose(
Claim.wrap(0x0001010000010100000010100000101000001010000010100000010100000101),
abi.encodePacked(uint64(128), uint64(anchor.gamelndex()), uint64(0))

vm.stopPrank();

// Finalize claim after clock period expires
vm.warp (
game .GENESIS_TIME_STAMP() + game.PROPOSAL_TIME_GAP()
+ game.PROPOSAL_OUTPUT_COUNT() * game.OUTPUT_BLOCK_SPAN() * game.L2_BLOCK_TIME
() =2
)
invalid.resolve();

// Submit late proposal

vm.startPrank(address (0x2));

KailuaTournament valid = treasury.propose(
Claim.wrap(0x00010100000101000000101000001010000010100000101000000101600000100) ,
abi.encodePacked(uint64(128), uint64(anchor.gamelndex()), uint64(0))

)

vm.stopPrank();

assert(invalid.signature() != valid.signature());

// Submit validity proof

bytes memory proof = mockValidityProof(
address (this),
valid.l1lHead().raw(),
valid.parentGame().rootClaim().raw(),
valid.rootClaim().raw(),

uint64(valid.12BlockNumber()),

uint64(valid.PROPOSAL_OUTPUT_COUNT()),
uint64(valid.OUTPUT_BLOCK_SPAN()),
valid.blobsHash()

)

// Resolve late proposal through validity proof
valid.parentGame().proveValidity(address(this), uint64(1), proof);
valid.resolve();

© 2025 Veridise Inc. Veridise Audit Report: Kailua Protocol




12

46
47
48
49
50
51
52
53
54

Contents

// 2 siblings marked as accepted
assert(invalid.status() == GameStatus.DEFENDER_WINS);
assert(valid.status() == GameStatus.DEFENDER_WINS);
assert(invalid.parentGame() == valid.parentGame());

// 0Original proposer eliminated
assert(treasury.eliminationRound(address(0x1)) > 0);

Recommendation We recommend modifying the logic of the contracts to explicitly and
carefully handle proposals submitted after a child of a tournament has been successfully
resolved.

Developer Response The developers have added a check in pruneChildren() to see if the
current contender has been marked as resolved. If so, it returns it immediately. They have also
added a test case for this issue.

© 2025 Veridise Inc. Veridise Audit Report: Kailua Protocol




13

A W N R

Contents

5.1.3 V-KLA-VUL-003: Bonds for proposals made after challenge duration are lost

Low 7eb9869
Logic Error Fixed
KailuaTournament.sol
pruneChildren()

Confirmed Fix At https://github.com/risc0/kailua/pull/46

Children of a proposal may be added via appendChild() at any point, even after resolution has
occurred. pruneChildren() should eliminate all other proposals that were not resolved as the
winning contender. However, once the challenge duration against a contending proposal has
passed, the pruneChildren() function will no longer eliminate children.

if (contender.getChallengerDuration(opponent.createdAt().raw()).raw() == 0) {
// Note: This implies eliminationLimit > 0
break;

}

Snippet 5.4: Snippet from KailuaTournament:pruneChildren()

Therefore, any proposals made after the challenge duration of a valid proposal will not be
eliminated.

Impact The bonds of the proposals that are not eliminated will be stuck in the KailuaTreasury
contract.

Recommendation Have a method of eliminating children after a contender has been resolved.
Note that if the behavior of submitting proposals after resolution is desirable for fork resolution,
then care must be taken on propagating elimination to later proposals.

Developer Response The developers have modified KailuaTreasury.claimProposerBond() to
enable a proposer to withdraw their bond if they are not eliminated, and if the most recent
game they have proposed in is resolved. This allows withdrawal of any proposals submitted
after the challenge duration as these proposals are never processed (and thus their proposers
are not eliminated).

© 2025 Veridise Inc. Veridise Audit Report: Kailua Protocol


https://github.com/risc0/kailua/pull/46

14 Contents

5.1.4 V-KLA-VUL-004: Proofs can be submitted after resolution

Warning 79869
Logic Error Fixed
File(s) KailuaTournament.sol

proveNullFault(), proveOutputFault(), proveValidity/()
Confirmed Fix At https://github.com/risc0/kailua/pull/44, dbfd8d4

The tournament allows proofs to be submitted for children. In the proving functions
(proveNullFault, proveOutputFault, and proveValidity), there are no checks that the
tournament is still on-going (i.e., there is not already a resolved child).

Impact In V-KLA-VUL-002 we show how actions after resolution can be used to create
unexpected behaviors.

Recommendation As far as we can tell, there is no reason to continue to allow proving after
resolution. We would suggest disallowing proving after resolution.

Developer Response The developers have added extra checks to the tournaments to prevent
the following behavior:

» Appending anew child tournament when the contender child has already been successfully
resolved.

» Submitting a proof (through proveNullFault, proveOutputFault or proveValidity) for a
child tournament when the contender child has already been successfully resolved.

With these changes, the state of a tournament is now locked once one of its children is resolved.

© 2025 Veridise Inc. Veridise Audit Report: Kailua Protocol


https://github.com/risc0/kailua/pull/44

15

Contents

5.1.5 V-KLA-VUL-005: Unused program constructs

Warning 7¢b9569
Maintainability Fixed
See issue description

See issue description

Confirmed Fix At https://github.com/risc0/kailua/pull/45, d41694c

Description The following program constructs are unused:

1. KailualLib.sol:

a) error GameTypeMismatch(GameType parentType, GameType expectedType)
b) error BlockCountExceeded(uint256 12BlockNumber, uint256 rootBlockNumber)
c) error BlobHashMismatch(bytes32 found, bytes32 expected)

Impact These constructs may become out of sync with the rest of the project, leading to errors
if used in the future.

Developer Response The developers have removed the unused errors from the codebase.

© 2025 Veridise Inc. Veridise Audit Report: Kailua Protocol


https://github.com/risc0/kailua/pull/45

16

Contents

5.1.6 V-KLA-VUL-006: Typos, incorrect comments, and small code suggestions

Info 7eb9869
Maintainability Fixed
See issue description

See issue description

Confirmed Fix At https://github.com/risc0/kailua/pull/45, d41694c

Description In the following locations, the auditors identified minor typos and potentially
misleading comments:

1. KailuaTreasury.sol:

a) Instead of defining your own nonReentrant modifier, consider using
OpenZeppelin’s standard implementation.

b) The comment on line 35 above the definition of L2_BLOCK_NUMBER incorrectly says it
is the root claim.

2. KailuaTournament.sol:

a) In pruneChildren, a duplicate of the contender will count twice towards the
elimination count - once when added to the contenderDuplicates array and once
when eliminated from that array (if ever eliminated). This may ultimately be fine,

but means that contender duplicates count doubly towards elimination count when
no other children will.

Impact These minor errors may lead to future developer confusion.

Developer Response The developers have fixed the incorrect documentation comment and
renamed the eliminationLimit variable to stepLimit to more accurately reflect its intended
behavior (for example regarding handling of duplicates). For the nonReentrant modifier, they

have noted that using the OpenZeppelin library is something they are open to in the future,
should they require more of its functionality.

© 2025 Veridise Inc. Veridise Audit Report: Kailua Protocol


https://github.com/risc0/kailua/pull/45

¥ Glossary

Denial-of-Service An attack in which the liveness or ability to use a service is hindered . 4

optimistic rollup A rollup in which the state transition of the rollup is posted "optimistically"
to the base network. A system involving stake for resolving disputes during a challenge
period is required for economic security guarantees surrounding finalization . 1

rollup A blockchain that extends the capabilities of an underlying base network, such as higher
throughput, while inheriting specific security guarantees from the base network. Rollups
contain smart contracts on the base network that attest the state transitions of the rollup
are valid . 17

smart contract A self-executing contract with the terms directly written into code. Hosted on a
blockchain, it automatically enforces and executes the terms of an agreement between
buyer and seller. Smart contracts are transparent, tamper-proof, and eliminate the need
for intermediaries, making transactions more efficient and secure. 1, 17

Veridise Audit Report: Kailua Protocol © 2025 Veridise Inc.



	Veridise Auditing Report
	Contents
	Executive Summary
	Project Dashboard
	Security Assessment Goals and Scope
	Security Assessment Goals

	Security Assessment Goals
	Security Assessment Methodology & Scope

	Security Assessment Methodology & Scope
	Classification of Vulnerabilities

	Classification of Vulnerabilities
	Trust Model
	Operational Assumptions.

	Operational Assumptions.
	Off-chain Component Assumptions
	Privileged Roles.

	Privileged Roles.
	Vulnerability Report
	Detailed Description of Issues

	Detailed Description of Issues
	V-KLA-VUL-001: Duplicate proposal bonds are lost
	V-KLA-VUL-002: Late validity proof allows eliminating a resolved proposal
	V-KLA-VUL-003: Bonds for proposals made after challenge duration are lost
	V-KLA-VUL-004: Proofs can be submitted after resolution
	V-KLA-VUL-005: Unused program constructs
	V-KLA-VUL-006: Typos, incorrect comments, and small code suggestions
	Glossary

