
Auditing Report
Hardening Blockchain Security with Formal Methods

FOR

Kailua Protocol

Veridise Inc.
June 16, 2025

▶ Prepared For:

RISC Zero
https://risczero.com/

▶ Prepared By:

Benjamin Mariano
Tyler Diamond

▶ Contact Us:

contact@veridise.com

▶ Version History:

Jun. 16, 2025 V1
Jun. 11, 2025 Initial Draft

© 2025 Veridise Inc. All Rights Reserved.

https://risczero.com/
contact@veridise.com

Contents

Contents iii

1 Executive Summary 1

2 Project Dashboard 3

3 Security Assessment Goals and Scope 4
3.1 Security Assessment Goals . 4
3.2 Security Assessment Methodology & Scope . 4
3.3 Project Assumptions . 5
3.4 Classification of Vulnerabilities . 5

4 Vulnerability Report 7
4.1 Detailed Description of Issues . 8

4.1.1 V-KLA-VUL-001: Premature proposals can block legitimate proposals . 8
4.1.2 V-KLA-VUL-002: Unstated assumptions may lead to confusion 10
4.1.3 V-KLA-VUL-003: Unchecked arithmetic overflow 12
4.1.4 V-KLA-VUL-004: Execution results not validated 13
4.1.5 V-KLA-VUL-005: Overloaded use of the precondition hash may lead to

confusion . 14
4.1.6 V-KLA-VUL-006: Typos, incorrect comments, and small suggestions . . 15

Glossary 17

Veridise Audit Report: Kailua Protocol © 2025 Veridise Inc.

1 Executive Summary

From May 28, 2025 to Jun. 9, 2025, RISC Zero engaged Veridise to conduct a security assessment
of their Kailua Protocol, which aims to create an infrastructure for optimistic rollups that
resolve disputes with a zero-knowledge virtual machine (zkVM) application. In this audit,
Veridise only reviewed the off-chain zkVM application and no on-chain components. This is the
third review Veridise has conducted on the Kailua Protocol‗. Compared to the other versions
of the code audited, the new version contains a number of refactors and changes as well as
introduces the notion of "stitching", which enables proof decomposition by allowing proofs to
rely on other proofs from the same zkVM application. Veridise conducted the assessment over 4
person-weeks, with 2 security analysts reviewing the project over 2 weeks on commit 52c5999.
The review strategy involved a thorough code review of the program source code performed by
Veridise security analysts.

Project Summary. The security assessment covered the RISC Zero zkVM application that
is used to prove the execution of the OP-stack (Optimism’s optimistic rollup implementation)
chain derivation function. This application produces the deterministic rollup state root by
deriving it from the rollup data that has been posted to the base network. In other words, it
produces a proof that a given L2 block has a particular state root which can be used to invalidate
proposals made on-chain when necessary. This component can include an additional proof to
validate that a given set of intermediate state roots were used in the derivation as necessary for
validity proofs. It can also be constructed in a compositional manner using other proofs from
the same zkVM application for both constructing execution traces and proofs of other state
roots.

Code Assessment. The Kailua Protocol developers provided the source code of the Kailua
Protocol for the code review. The source code appears to be mostly original code written by
the Kailua Protocol developers. It contains some documentation in the form of READMEs and
documentation comments on functions and storage variables. To facilitate the Veridise security
analysts’ understanding of the code, the Kailua Protocol developers shared some protocol-level
documentation.

The source code contained a test suite, which the Veridise security analysts noted had good
coverage of most functions audited.

Summary of Issues Detected. The security assessment uncovered 6 issues, including 1
medium-severity issue, 3 warnings, and 2 information findings. The medium severity issue
(V-KLA-VUL-001) concerns the ability for users to produce proofs disproving valid proposals if
timing gaps are not appropriately set. Warnings include potential arithmetic overflow concerns
(V-KLA-VUL-003) and execution data that are not validated (V-KLA-VUL-004).

‗ The previous audit reports, if they are publicly available, can be found on Veridise’s website at https://veridise.
com/audits/

Veridise Audit Report: Kailua Protocol © 2025 Veridise Inc.

https://veridise.com/audits/
https://veridise.com/audits/

2 Contents

Recommendations. After conducting the assessment of the protocol, the security analysts
noted that the protocol relied on a large amount of code that was out-of-scope for the audit,
including the Kona† protocol which handles much of the logic around actually validating
derivation proofs. Because these portions of the code are critical to the safe and correct
functioning of the Kailua Protocol, Veridise strongly suggests the Kailua team to commission
additional independent security audits for the out-of-scope code.

The analysts also noted that the smart contracts used variable names in the proving functions
that differ from those used in the off-chain code reviewed for this audit. In particular, the
variable names used for entries in the proof journal do not match those found in structures
such as BootInfo. This made it difficult to correctly link behaviors between the off-chain and
on-chain code and could lead to issues in the future. Veridise auditors suggest developers unify
the naming convention across these codebases.

Disclaimer. We hope that this report is informative but provide no warranty of any kind,
explicit or implied. The contents of this report should not be construed as a complete guarantee
that the system is secure in all dimensions. In no event shall Veridise or any of its employees be
liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise,
arising from, out of or in connection with the results reported here.

† https://github.com/op-rs/kona

© 2025 Veridise Inc. Veridise Audit Report: Kailua Protocol

https://github.com/op-rs/kona

2 Project Dashboard

Table 2.1: Application Summary.

Name Version Type Platform
Kailua Protocol 52c5999 Rust RISC Zero

Table 2.2: Engagement Summary.

Dates Method Consultants Engaged Level of Effort
May 28–Jun. 9, 2025 Manual & Tools 2 4 person-weeks

Table 2.3: Vulnerability Summary.

Name Number Acknowledged Fixed
Critical-Severity Issues 0 0 0
High-Severity Issues 0 0 0
Medium-Severity Issues 1 1 1
Low-Severity Issues 0 0 0
Warning-Severity Issues 3 3 3
Informational-Severity Issues 2 2 2
TOTAL 6 6 6

Table 2.4: Category Breakdown.

Name Number
Data Validation 2
Maintainability 2
Denial of Service 1
Arithmetic Overflow 1

Veridise Audit Report: Kailua Protocol © 2025 Veridise Inc.

3 Security Assessment Goals and Scope

3.1 Security Assessment Goals

The engagement was scoped to provide a security assessment of Kailua Protocol’s codebase.
During the assessment, the security analysts aimed to answer questions such as:

▶ Can invalid state transitions be proven by the zkVM application?
▶ Are precondition hashes properly validated and used such that intermediate roots used

for off-chain proofs must match those provided on-chain?
▶ Can execution and derivation proofs be stitched inappropriately to generate invalid

proofs?
▶ Is appropriate validation of execution traces performed to ensure that cached execution in

derivation proofs are correct?
▶ Can insufficient L1 data be used to generate proofs that can invalidate valid derivation

proofs?
▶ Does the off-chain component ensure that there is only a single validity proof for a given

derivation?
▶ Does the project have common Rust project pitfalls (e.g., untrusted dependencies, bad use

of unsafe code, arithmetic overflow)?

3.2 Security Assessment Methodology & Scope

Security Assessment Methodology. To address the questions above, the security assessment
involved human experts reviewing the code.

Scope. The scope of this security assessment is limited to the following files of the source code
provided by the Kailua Protocol developers, which contains the functionality relating to deriving
and executing an OP-stack rollup:

▶ build/risczero/build.rs
▶ build/risczero/fpvm/src/main.rs
▶ crates/common/src/lib.rs
▶ crates/common/src/blobs.rs
▶ crates/common/src/config.rs
▶ crates/common/src/executor.rs
▶ crates/common/src/journal.rs
▶ crates/common/src/kona.rs
▶ crates/common/src/precondition.rs
▶ crates/common/src/client/core.rs
▶ crates/common/src/client/stateless.rs
▶ crates/common/src/client/stitching.rs

Veridise Audit Report: Kailua Protocol © 2025 Veridise Inc.

5 Contents

Notably, this report strictly focuses on files relating to the proving functionality of the project,
and does not include the behavior of the node software that was reviewed in the first Veridise
security review, or the smart contracts covered by the second review.

Methodology. Veridise security analysts reviewed the reports of previous audits for Kailua
Protocol, inspected the provided tests, and read the Kailua Protocol documentation. They then
began a manual review of the code.

During the security assessment, the Veridise security analysts met with the Kailua Protocol
developers to ask questions about the code. Additionally, they reviewed the Kailua book‗ and
high-level Kona documentation†.

3.3 Project Assumptions

Given the narrow scope of the code, and the heavy usage of external dependencies (specifically
the Kona crate), the security analysts operated under specific assumptions regarding the behavior
of code outside the scope of the review. This section documents the behavior that Kona and
other out-of-scope code is expected to perform.

▶ The chain providers, and the oracles that back them, correctly answer block header queries
– in other words, retrieved block headers match the provided block hashes.

▶ Setup and execution of chain state is consistent with information provided in the rollup
configuration.

▶ The BootInfo L2 chain ID is equal to the L2 chain ID in the rollup config embedded in
BootInfo.

▶ Payload execution is correct.
▶ Output derivation correctly retrieves the requested output block and output root.

• If the driver was not able to perform the execution or derivation, and it did not
return an Err, then the returned block number must be equal to the one prior to the
unfulfilled request.

• The driver will not produce blocks further in advance than the requested target
block.

▶ Receipt root verification for receipts resulting from execution match the expected semantics.
▶ The output root is correctly computed.
▶ Oracles are properly queried for data (some instances in the code only perform a get() on

the requested key, as opposed to writing the request prior to the get() call).

3.4 Classification of Vulnerabilities

When Veridise security analysts discover a possible security vulnerability, they must estimate
its severity by weighing its potential impact against the likelihood that a problem will arise.

The severity of a vulnerability is evaluated according to the Table 3.1.

The likelihood of a vulnerability is evaluated according to the Table 3.2.
‗ https://risc0.github.io/kailua/
† https://docs.rs/kona-protocol/latest/kona_protocol/

© 2025 Veridise Inc. Veridise Audit Report: Kailua Protocol

https://risc0.github.io/kailua/
https://docs.rs/kona-protocol/latest/kona_protocol/

6 Contents

Table 3.1: Severity Breakdown.

Somewhat Bad Bad Very Bad Protocol Breaking
Not Likely Info Warning Low Medium

Likely Warning Low Medium High
Very Likely Low Medium High Critical

Table 3.2: Likelihood Breakdown

Not Likely A small set of users must make a specific mistake
Requires a complex series of steps by almost any user(s)

Likely - OR -
Requires a small set of users to perform an action

Very Likely Can be easily performed by almost anyone

The impact of a vulnerability is evaluated according to the Table 3.3:

Table 3.3: Impact Breakdown

Somewhat Bad Inconveniences a small number of users and can be fixed by the user
Affects a large number of people and can be fixed by the user

Bad - OR -
Affects a very small number of people and requires aid to fix
Affects a large number of people and requires aid to fix

Very Bad - OR -
Disrupts the intended behavior of the protocol for a small group of
users through no fault of their own

Protocol Breaking Disrupts the intended behavior of the protocol for a large group of
users through no fault of their own

© 2025 Veridise Inc. Veridise Audit Report: Kailua Protocol

4 Vulnerability Report

This section presents the vulnerabilities found during the security assessment. For each issue
found, the type of the issue, its severity, location in the code base, and its current status (i.e.,
acknowledged, fixed, etc.) is specified. Table 4.1 summarizes the issues discovered:

Table 4.1: Summary of Discovered Vulnerabilities.
ID Description Severity Status
V-KLA-VUL-001 Premature proposals can block legitimate . . . Medium Fixed
V-KLA-VUL-002 Unstated assumptions may lead to confusion Warning Fixed
V-KLA-VUL-003 Unchecked arithmetic overflow Warning Fixed
V-KLA-VUL-004 Execution results not validated Warning Fixed
V-KLA-VUL-005 Overloaded use of the precondition hash . . . Info Fixed
V-KLA-VUL-006 Typos, incorrect comments, and small . . . Info Fixed

Veridise Audit Report: Kailua Protocol © 2025 Veridise Inc.

8 Contents

4.1 Detailed Description of Issues

4.1.1 V-KLA-VUL-001: Premature proposals can block legitimate proposals

Severity Medium Commit 52c5999
Type Denial of Service Status Fixed

File(s) crates/common/src/client/core.rs

Location(s) run_core_client()
Confirmed Fix At pull/50through49440bf

The run_core_client() function runs the main derivation and execution proof processes. The
derivation process is provided info by the l1_provider, which is seeded with the L1 head via
the boot.l1_head. This will determine what L1 data is available in order to derive the correct
state of the L2. If insufficient data is available during the derivation & execution process, then
the process will stop as seen below:

1 if output_block.block_info.number == starting_block {

2 // A mismatch indicates that there is insufficient L1 data available to produce

3 // an L2 output root at the claimed block number

4 client::log("HALT");

5 break;

6 }

Snippet 4.1: Snippet from crates/common/src/client/core.rs:run_core_client()

This causes the output_roots array, which collects all output roots from execution, to not
contain enough entries to match the expected_output_count. In which case, the output_hash

will be set to a None:

1 if output_roots.len() != expected_output_count {

2 // Not enough data to derive output root at claimed height

3 Ok((boot, precondition_hash, None))

4 }

Snippet 4.2: Snippet from crates/common/src/client/core.rs:run_core_client()

Lastly, when the output_hash is set to None, the entire run_core_client() will ensure the
claimed output root is 0:

1 // Check claimed_l2_output_root correctness

2 if let Some(computed_output) = output_hash {

3 // With sufficient data, the input l2_claim must be true

4 assert_eq!(boot.claimed_l2_output_root, computed_output);

5 } else {

6 // We use the zero claim hash to denote that the data as of l1 head is

insufficient

7 assert_eq!(boot.claimed_l2_output_root, B256::ZERO);

8 }

Snippet 4.3: Snippet from crates/common/src/client/core.rs:run_core_client()

For the Kailua smart contracts, the L1 head for a proposal is set in the Optimism
DisputeGameFactory as the blockhash of the block preceding the proposal creation transaction.

© 2025 Veridise Inc. Veridise Audit Report: Kailua Protocol

pull/50 through 49440bf

9 Contents

Optimism defines the Sequencing Windows Size (SWS) as the amount of time that data can be
posted to the L1 for a given L2 block. Additionally, Kailua’s PROPOSAL_TIME_GAP defines a delay
until a proposal for a given L2 block can be made.

The PROPOSAL_TIME_GAP may be less than the SWS. If that is the case, then a proposal can be
made before the SWS has passed. This allows for L2 derivation to occur quicker than the SWS, if
the required data has indeed been posted.

However, if not enough data has been posted to the L1 after PROPOSAL_TIME_GAP, then the L1
head for a proposal will be set to a value that causes the run_core_client() to output a 0 value
hash, indicating an incorrect proposal.

The issue arises in that proving the incorrectness of a proposal is stored in the smart contract
based upon its signature. The preimage of the signature of a proposal is defined as only its root
claim and blob hashes:

Snippet from crates/contracts/foundry/src/KailuaTournament.sol

1 function signature() public view returns (bytes32 signature_) {

2 // note: the absence of the l1Head in the signature implies that

3 // the proposal gap should absolutely guarantee derivation

4 signature_ = sha256(abi.encodePacked(rootClaim().raw(), proposalBlobHashes));

5 }

Therefore, if a proposal is made that has an L1 head with insufficient data while simultaneously
containing the correct output roots and root claim, then once it is proven faulty, the correct
output roots are essentially blacklisted, even with the correct L1 head.

Impact A denial-of-service arises where the correct proposal cannot be proven valid, or be a
winning contender.

Recommendation The requirement on the PROPOSAL_TIME_GAP should be more strictly
defined, and possibly enforce it being greater than the SWS during the construction of the
smart contracts.

Developer Response The developers have disabled the ability to generate proofs whose L1
head has insufficient data for derivation. Therefore, any proofs that are created must have access
to a canonical L1 head.

Fix Review Note Note that this fix also includes changes to portions of code that are out-
of-scope of this review (such as changes to the smart contracts and node behavior). Veridise
auditors only reviewed the safety of the changes to in-scope code and encourage the developers
to have any changes to out-of-scope code separately reviewed.

© 2025 Veridise Inc. Veridise Audit Report: Kailua Protocol

10 Contents

4.1.2 V-KLA-VUL-002: Unstated assumptions may lead to confusion

Severity Warning Commit 52c5999
Type Data Validation Status Fixed

File(s) precondition.rs, blobs.rs

Location(s) validate_precondition(), get_blobs(), field_elements()
Confirmed Fix At pull/51throughf6cee44

The following rely on unstated assumptions that could lead to issues:

1. validate_precondition():

a) The function takes in a vector of blobs that are intended to correspond to the
blob_hashes provided as part of the precondition_validation_data (also passed as
an input). However, there is never any validation that the blob hashes in the
precondition validation data correspond to the blobs provided.

b) The function takes in a vector of blobs and an array of output roots. It is intended
that the lengths of these blobs is the minimal length necessary to contain the output
roots based on the proposal output count and output block span indicated in the
precondition validation data but this is never validated.

2. get_blobs():

a) The entries stored in the blob provider are assumed to be stored in the exact order of
the blob hashes requested. If not, weird, unexpected behaviors could arise.

3. field_elements():

a) This function does not check that the "field elements" produced and added to the
resulting vector are actually field elements.

Impact For (1a), currently, the call-sites of validate_precondition() all perform this check
before invoking the function. Thus, there is no way that auditors can find to violate this lack of
validation at the moment. However, this may lead to issues if future code changes are made
without accounting for this assumption.

For (1b), the on-chain contracts ensure that the correct number of blobs are provided, which
avoid the case when someone could provide extra blobs on chain and still have a matching
precondition hash. However, if the contracts change or this circuit is used by something else in
the future that doesn’t have this check, it could lead to unexpected behavior.

For (2a), if the caller of get_blobs() only fetches one blob hash at once it should work as long as
the provider is loaded correctly (or at least error out if not). However, if multiple blob hashes
are requested, it is possible it might not error depending on the call-site. Any future use of this
function would be error prone.

For (3a), it appears all of the callers do not rely on these being valid field elements. However, a
decent portion of the code that uses this function is out-of-scope, so developers should carefully
investigate the potential implications of this.

© 2025 Veridise Inc. Veridise Audit Report: Kailua Protocol

pull/51 through f6cee44

11 Contents

Recommendation Add checks in these function where possible or at least document the
assumptions to avoid issues arising in future development.

Developer Response The developers provided the following fixes:

1. They documented the assumption for (a) and (b) in comments.
2. They added an error to get_blobs() in the case of any mismatching blobs and hashes.
3. They added a check to field_elements() that all produced elements are valid field

elements.

© 2025 Veridise Inc. Veridise Audit Report: Kailua Protocol

12 Contents

4.1.3 V-KLA-VUL-003: Unchecked arithmetic overflow

Severity Warning Commit 52c5999
Type Arithmetic Overflow Status Fixed

File(s) N/A
Location(s) N/A

Confirmed Fix At pull/54through00f5505

In Rust, by default there is no overflow checking on arithmetic operations on release builds.
This can be overridden by enabling overflow checks in the Cargo.toml file. This is not enabled
for this project.

Impact Auditors were not able to find any locations where arithmetic overflow could cause
issues. However, much of the code is out-of-scope and one instance of unexpected overflow
could lead to undesirable outcomes.

Recommendation Enable overflow checking on release.

Developer Response The developers enabled overflow checking on release.

© 2025 Veridise Inc. Veridise Audit Report: Kailua Protocol

pull/54 through 00f5505

13 Contents

4.1.4 V-KLA-VUL-004: Execution results not validated

Severity Warning Commit 52c5999
Type Data Validation Status Fixed

File(s) stitching.rs

Location(s) stitch_executions()
Confirmed Fix At pull/55throughbfaae6a

In stitch_executions(), the logic validates that the execution traces provided and used in the
proof themselves correspond to execution proofs produced by the FPVM. It does this by :

1. Ensuring the receipts root from each Execution’s header matches the receipts root
computed by Kona using the Execution artifacts and attributes.

2. Checking that the execution trace corresponds to an execution proof of the FPVM by
computing the execution trace’s precondition hash and using that in the check of the
journal.

For (2), the computation of the precondition hash of an execution trace does not include the
execution_result field of the artifacts, meaning different execution results can be provided in
the Execution structs when provided to the current proof than were required to construct the
Execution proof. The check in (1) ensures the receipts in the execution result does match the
receipts root from the header, but the EIP-7685 requests and gas used are never validated to
match.

Impact At the moment, we could not find a way for a user to manipulate these values. While
they can be set to the wrong values when generating a proof, the EIP-7685 requests don’t seem
to be used in any derivation or executions and the total gas used is read from the headers
instead of the artifacts. However, future code changes that do not recognize this assumption
could lead to significant bugs.

Recommendation Add checks that the gas used and EIP-7685 requests match the correspond-
ing fields in the execution header.

Developer Response The developers added checks that the gas limit from the artifacts matches
the amount specified in the header. They also added checks that no requests are specified in the
artifacts.

© 2025 Veridise Inc. Veridise Audit Report: Kailua Protocol

pull/55 through bfaae6a

14 Contents

4.1.5 V-KLA-VUL-005: Overloaded use of the precondition hash may lead to
confusion

Severity Info Commit 52c5999
Type Maintainability Status Fixed

File(s) core.rs

Location(s) run_core_client()
Confirmed Fix At pull/52through0724bb7

The precondition hash is used in multiple different ways that might lead to confusion. In
particular, it is used in the following ways:

1. It is used to capture the blob hashes of intermediate roots in a derivation proof for validity
proofs.

2. It is used to indicate a dispute proof when set to zero.
3. For execution-only proofs (when an L1 head of zero is provided), it is used to uniquely

identify the executions being evaluated.

Impact At the moment, auditors were not able to identify any logic in the current codebase
that confused these leading to vulnerabilities. However, using the same value may lead to
confusion, especially if future developers are unaware of these distinctions.

Recommendation Add explicit new values to the journal to capture different types of proofs
(or even just make multiple zkVM apps for the different proofs). If this is not desirable, at least
carefully document these various usages and assumptions.

Developer Response The developers added a comment clarifying the different uses of the
precondition hash.

© 2025 Veridise Inc. Veridise Audit Report: Kailua Protocol

pull/52 through 0724bb7

15 Contents

4.1.6 V-KLA-VUL-006: Typos, incorrect comments, and small suggestions

Severity Info Commit 52c5999
Type Maintainability Status Fixed

File(s) See issue description
Location(s) See issue description

Confirmed Fix At pull/53througheb77d32

Description In the following locations, the auditors identified minor typos, potentially
misleading comments, or other small issues:

1. executor.rs:

a) new_execution_cursor():
i. The comments indicate that the safe_header corresponds to an L1 block header

but it actually refers to an L2 block header.
ii. For the tip, the L2 safe header output root is set to Zero. We could not find any

way that this leads to unexpected behavior, but it would be good to document
why this can be set to zero safely here.

2. precondition.rs:

a) enum PreconditionValidationData:
i. This enum only contains one variant, so could just be made into a struct.

3. blobs.rs:

a) hash_to_fe():
i. The function reduce_mod is not part of the stable API for the library used and

may therefore be subject to change or removal.
b) The function from creates blobs from value.blobs, and uses that in the call to

construct entries, where it first converts each blob back from the value it was
converted to in blobs. This can be simplified by just providing the original
value.blobs.

c) The KZG settings are fetched in two different ways in BlobWitnessData::from() and
PreloadedBlobProvider::from(). It is advisable to use the same technique both
times if possible.

Additionally, running cargo audit indicated the following possible vulnerability in a
dependency that developers should investigate:

1 Crate: protobuf

2 Version: 2.28.0

3 Title: Crash due to uncontrolled recursion in protobuf crate

4 Date: 2024-12-12

5 ID: RUSTSEC-2024-0437

6 URL: https://rustsec.org/advisories/RUSTSEC-2024-0437

7 Solution: Upgrade to >=3.7.2

8 Dependency tree:

9 protobuf 2.28.0

10 |- prometheus 0.13.4

© 2025 Veridise Inc. Veridise Audit Report: Kailua Protocol

pull/53 through eb77d32

16 Contents

11 | |- opentelemetry-prometheus 0.27.0

12 | |- kailua-client 0.3.8

13 | | |- kailua-host 0.3.8

14 | | | |- kailua-cli 0.3.8

15 | | |- kailua-cli 0.3.8

16 | |- kailua-cli 0.3.8

17 |- opentelemetry-prometheus 0.27.0

Impact These minor errors may lead to future developer confusion.

Developer Response The developers have made all of the requested changes except the
following:

▶ enum PreconditionValidationData was kept as an enum because the eventual goal is to
have one enum variant for each of the proof types (validity, fault, and execution).

▶ They have kept the conversion in the from() function back and forth between different
blob types. They did this because "verify_blob_kzg_proof_batch() requires c_kzg crate
Blobs, while the entries are alloy_eips crate Blobs, so the conversion to c_kzg blobs has to
be made once in order to validate the blobs, and the conversion back is needed for the
alloy_eips return type. Currently it works without copies."

© 2025 Veridise Inc. Veridise Audit Report: Kailua Protocol

Glossary

optimistic rollup A rollup in which the state transition of the rollup is posted "optimistically"
to the base network. A system involving stake for resolving disputes during a challenge
period is required for economic security guarantees surrounding finalization. 1

rollup A blockchain that extends the capabilities of an underlying base network, such as higher
throughput, while inheriting specific security guarantees from the base network. Rollups
contain smart contracts on the base network that attest the state transitions of the rollup
are valid. 17

smart contract A self-executing contract with the terms directly written into code. Hosted on a
blockchain, it automatically enforces and executes the terms of an agreement between
buyer and seller. Smart contracts are transparent, tamper-proof, and eliminate the need
for intermediaries, making transactions more efficient and secure. 17

zero-knowledge circuit A cryptographic construct that allows a prover to demonstrate to a
verifier that a certain statement is true, without revealing any specific information about
the statement itself. See https://en.wikipedia.org/wiki/Zero-knowledge_proof for
more. 17

zkVM A general-purpose zero-knowledge circuit that implements proving the execution of a
virtual machine. This enables general purpose programs to prove their execution to outside
observers, without the manual constraint writing usually associated with zero-knowledge
circuit development. 1

Veridise Audit Report: Kailua Protocol © 2025 Veridise Inc.

https://en.wikipedia.org/wiki/Zero-knowledge_proof

	Veridise Auditing Report
	Contents
	Executive Summary
	Project Dashboard
	Security Assessment Goals and Scope
	Security Assessment Goals

	Security Assessment Goals
	Security Assessment Methodology & Scope

	Security Assessment Methodology & Scope
	Project Assumptions

	Project Assumptions
	Classification of Vulnerabilities

	Classification of Vulnerabilities
	Vulnerability Report
	Detailed Description of Issues

	Detailed Description of Issues
	V-KLA-VUL-001: Premature proposals can block legitimate proposals
	V-KLA-VUL-002: Unstated assumptions may lead to confusion
	V-KLA-VUL-003: Unchecked arithmetic overflow
	V-KLA-VUL-004: Execution results not validated
	V-KLA-VUL-005: Overloaded use of the precondition hash may lead to confusion
	V-KLA-VUL-006: Typos, incorrect comments, and small suggestions
	Glossary

